《2022年浙教版初中数学七年级下册第四章因式分解定向测试试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《2022年浙教版初中数学七年级下册第四章因式分解定向测试试题(含详细解析).docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、章节同步练习2022年浙教版初中数学 七年级下册知识点习题定向攻克含答案及详细解析第四章 因式分解浙教版初中数学七年级下册第四章因式分解定向测试(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下列等式中,从左到右是因式分解的是( )A.B.C.D.2、已知,则的值为( )A.0和1B.0和2C.0和-1D.0或13、把多项式x39x分解因式,正确的结果是( )A.x(x29)B.x(x3)(x3)C.x(x3)2D.x(3x)(3x)4、下列从左边到右边的变形,属于因式分解的是( )A.B.
2、C.D.5、若,则的值为( )A.B.C.D.6、把代数式ax28ax+16a分解因式,下列结果中正确的是()A.a(x+4)2B.a(x4)2C.a(x8)2D.a(x+4)(x4)7、下列等式从左到右的变形,属于因式分解的是()A.x2+2x1(x1)2B.(a+b)(ab)a2b2C.x2+4x+4(x+2)2D.ax2aa(x21)8、下列各式中,能用完全平方公式因式分解的是( )A.B.C.D.9、下列各式中与b2a2相等的是()A.(ba)2B.(a+b)(ab)C.(a+b)(a+b)D.(a+b)(ab)10、下列各式由左到右的变形中,属于因式分解的是( ).A.B.C.D.1
3、1、若x2+mx+n分解因式的结果是(x2)(x+1),则m+n的值为()A.3B.3C.1D.112、下列各式从左到右的变形,属于因式分解的是()A.ab+bc+bb(a+c)+bB.a29(a+3)(a3)C.(a1)2+(a1)a2aD.a(a1)a2a13、下列各式由左到右的变形中,属于因式分解的是()A.a2abac=a(a+b+c )B.x2+x+1=(x+1)2xC.(x+2)(x1)=x2+x2D.a2+b2=(a+b)22ab14、把多项式x2+mx+35进行因式分解为(x5)(x+7),则m的值是()A.2B.2C.12D.1215、下列由左边到右边的变形中,属于因式分解的
4、是( )A.(a1)(a1)a21B.a26a9(a3)2C.a22a1a(a2)1D.a25aa2(1)二、填空题(10小题,每小题4分,共计40分)1、若a+b2,a2b210,则2021a+b的值是 _2、因式分解:x26x_;(3mn)23m+n_3、分解因式:_4、因式分解:_5、将多项式因式分解_6、分解因式:2x3+12x2y+18xy2_7、分解因式:_;_8、因式分解_9、分解因式:_10、若mn3,mn7,则m2nmn2_三、解答题(3小题,每小题5分,共计15分)1、(1)计算:(2a2c)2 (3ab2) (2)分解因式:3a2b12ab+12b2、分解因式:3x2xy
5、2y2x+y3、下面是多项式x3+y3因式分解的部分过程,解:原式x3+x2yx2y+y3(第一步)(x3+x2y)(x2yy3)(第二步)x2(x+y)y(x2y2)(第三步)x2(x+y)y(x+y)(xy)(第四步) 阅读以上解题过程,解答下列问题:(1)在上述的因式分解过程中,用到因式分解的方法有 (至少写出两种方法)(2)在横线继续完成对本题的因式分解(3)请你尝试用以上方法对多项式8x31进行因式分解-参考答案-一、单选题1、B【分析】根据因式分解的定义:把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解,进行求解即可.【详解】解:A、,不是整式积的形式,不
6、是因式分解,不符而合题意;B、,是因式分解,符合题意;C、,不是乘积的形式,不是因式分解,不符合题意;D、,不是乘积的形式,不是因式分解,不符合题意;故选B.【点睛】本题主要考查了因式分解的定义,熟知定义是解题的关键.2、B【分析】根据已知条件得出(x-1)3-(x-1)=0,再通过因式分解求出x的值,然后代入要求的式子进行计算即可得出答案.【详解】解:,x-1=(x-1)3,(x-1)3-(x-1)=0,(x-1)(x-1)2-1=0,(x-1)(x-1+1)(x-1-1)=0,x(x-1)(x-2)=0,x1=0,x2=1,x3=2,x2-x=0或x2-x=12-1=0或x2-x=22-2
7、=2,故选:B.【点睛】此题考查了立方根,因式分解的应用,解题的关键是通过式子变形求出x的值.3、B【分析】原式提取公因式,再利用平方差公式分解即可.【详解】解:x39xx(x29)x(x3)(x3).故选:B.【点睛】本题考查了提公因式和公式法分解因式,熟练掌握平方差公式是解题的关键.4、C【分析】根据因式分解的定义判断即可.【详解】解:A,D选项的等号右边都不是积的形式,不符合题意;B选项,x2+4x+4=(x+2)2,所以该选项不符合题意;C选项,x2-2x+1=(x-1)2,符合题意;故选:C.【点睛】本题考查了因式分解的定义,熟练掌握因式分解的定义是解题的关键,把一个多项式化为几个整
8、式的积的形式,这种变形叫做把这个多项式因式分解.5、C【分析】根据十字相乘法可直接进行求解a、b的值,然后问题可求解.【详解】解:,;故选C.【点睛】本题主要考查因式分解,熟练掌握因式分解的方法是解题的关键.6、B【分析】直接提取公因式a,再利用完全平方公式分解因式即可.【详解】解:ax28ax+16aa(x28x+16)a(x4)2.故选B.【点睛】本题主要考查了分解因式,解题的关键在于能够熟练掌握分解因式的方法.7、C【分析】根据因式分解的意义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解分别进行判断,即可得出答案.【详解】A. x2+2x1(x1)2,故A不符合题
9、意;B. a2b2=(a+b)(ab),故B不符合题意;C. x2+4x+4(x+2)2,是因式分解,故C符合题意;D. ax2aa(x21)=a(x+1)(x-1),分解不完全,故D不符合题意;故选:C.【点睛】本题考查了因式分解的意义,解题的关键是正确理解因式分解的意义.8、C【分析】根据完全平方公式的特点判断即可;【详解】不能用完全平方公式,故A不符合题意;不能用完全平方公式,故B不符合题意;,能用完全平方公式,故C符合题意;不能用完全平方公式,故D不符合题意;故答案选C.【点睛】本题主要考查了因式分解公式法的判断,准确判断是解题的关键.9、C【分析】根据平方差公式直接把b2a2分解即可
10、.【详解】解:b2a2(ba)(b+a),故选:C.【点睛】此题主要考查了公式法分解因式,关键是掌握平方差公式.平方差公式:a2-b2=(a+b)(a-b).10、C【分析】根据因式分解是把一个多项式转化成几个整式积,可得答案.【详解】解:A、是整式的乘法,故A不符合;B、没把一个多项式转化成几个整式积,故B不符合;C、把一个多项式转化成几个整式积,故C符合;D、没把一个多项式转化成几个整式积,故D不符合;故选:C.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式积.11、A【分析】先根据多项式乘以多项式法则进行计算,再根据已知条件求出m、n的值,最后求出答案即可.【详解
11、】解:(x2)(x+1)x2+x2x2x2x2,二次三项式x2+mx+n可分解为(x2)(x+1),m1,n2,m+n1+(2)3,故选:A.【点睛】本题考查了多项式乘以多项式法则和分解因式,能够理解分解因式和多项式乘多项式是互逆运算是解决本题的关键.12、B【分析】根据因式分解的定义逐项排查即可.【详解】解:根据因式分解的定义可知:A、C、D都不属于因式分解,只有B属于因式分解.故选B.【点睛】本题主要考查了因式分解的定义,把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解.13、A【分析】根据因式分解是把一个多项式转化成几个整式的积的形式,可得答案;【详解】解:A、把一个
12、多项式转化成了几个整式的积,故A符合题意;、没把一个多项式转化成几个整式积,故不符合题意;、是整式的乘法,故C不符合题意;、没把一个多项式转化成几个整式积,故不符合题意;故选:A.【点睛】本题考查了因式分解的意义,解题的关键是掌握因式分解是把一个多项式转化成几个整式积.14、B【分析】根据整式乘法法则进行计算(x5)(x+7)的结果,然后根据多项式相等进行对号入座.【详解】解:(x5)(x+7),故选:B.【点睛】此题主要考查了多项式的乘法法则以及多项式相等的条件,即两个多项式相等,则它们同次项的系数相等.15、B【分析】根据因式分解的定义逐个判断即可.【详解】解:A.由左边到右边的变形属于整
13、式乘法,不属于因式分解,故本选项不符合题意;B.由左边到右边的变形属于因式分解,故本选项符合题意;C.由左边到右边的变形不属于因式分解,故本选项不符合题意;D.等式的右边不是整式的积的形式,即由左边到右边的变形不属于因式分解,故本选项不符合题意;故选:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.二、填空题1、2026【分析】利用平方差公式求得ab,将ab代入2021a+b2021(ab)即可.【详解】解:a+b2,a2b210,a2b2(a+b)(ab)2(ab)10,ab5,2021a+b2021(ab)20
14、21(5)2026,故答案为:2026.【点睛】本题主要考查了用平方差公式进行因式分解,解题的关键是利用平方差公式求得ab,牢记平方差公式 .2、x(x6) (3mn)(3mn1) 【分析】把x26x 中x提取出来即可,给(3mn)23m+n先加括号,然后再运用提取公因式法分解因式即可.【详解】解:x26xx(x6);(3mn)23m+n(3mn)2(3mn)(3mn)(3mn1).故答案为:x(x6),(3mn)(3mn1).【点睛】本题主要考查了提取公因式法分解因式,正确添加括号成为解答本题的关键.3、【分析】根据十字相乘法分解因式,即可得到答案.【详解】故答案为:.【点睛】本题考查了分解
15、因式的知识;解题的关键是熟练掌握十字相乘法分解因式的性质,从而完成求解.4、【分析】根据因式分解的定义,观察该多项式存在公因式,故.【详解】解:.故答案为:.【点睛】本题主要考查用提公因式法进行因式分解,解题的关键是熟练掌握提取公因式法.5、【分析】先提取公因式 再利用平方差公式分解因式即可得到答案.【详解】解:故答案为:【点睛】本题考查的是综合提公因式与公式法分解因式,熟练“一提二套三交叉四分组”的分解因式的方法与顺序是解题的关键.6、2x(x+3y)2【分析】首先提取公因式2x,再利用完全平方公式分解因式得出答案.【详解】解:原式2x(x2+6xy+9y2)2x(x+3y)2.故答案为:2
16、x(x+3y)2.【点睛】此题考查的是因式分解,掌握提公因式法和公式法是解题的关键.7、 【分析】第1个式子利用平方差公式分解即可;第1个式子先提取公因式,再利用完全平方公式继续分解即可.【详解】解:;故答案为:;.【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.8、【分析】根据完全平方公式分解因式即可.【详解】解:=【点睛】此题主要考查了公式法分解因式,正确运用乘法公式是解题关键.9、【分析】先提出公因式 ,再利用平方差公式进行因式分解即可.【详解】解:,故答案为:.【点睛】本题主要考查
17、了多项式的因式分解,熟练掌握多项式因式分解的方法提公因式法、公式法、十字相乘法、分组分解法,还要注意分解彻底,是解题的关键.10、21【分析】把所求的式子提取公因式mn,得mn(m-n),把相应的数字代入运算即可.【详解】解:mn=3,m-n=7,m2n-mn2=mn(m-n)=37=21.故答案为:21.【点睛】本题主要考查因式分解-提公因式法,解答的关键是把所求的式子转化成含已知条件的式子的形式.三、解答题1、(1)12a5b2c2;(2)3b(a2)2【分析】(1)根据积的乘方法则和单项式乘单项式的运算法则计算即可;(2)先运用提公因式法,再利用完全平方公式分解因式即可.【详解】解:(1
18、)原式;(2)原式.【点睛】此题主要考查了整式乘法的运算和分解因式,解决此题的关键是熟练掌握积的乘方法则、单项式乘单项式的运算法则去括号,及熟练运用分解因式的方法.2、(xy)(3x+2y1)【分析】先对代数式进行分解,然后十字相乘进行因式分解,再提取公因式即可.【详解】解:原式(3x2xy2y2)(xy)(3x+2y)(xy)(xy)(xy)(3x+2y1).【点睛】此题考查了因式分解的方法,熟练掌握因式分解的有关方法是解题的关键.3、(1)提公因式法,公式法,分组分解法;(2);(3)【分析】(1)根据题意可得因式分解的方法为提公因式法,公式法,分组分解法;(2)根据第四步的结果提公因式法因式分解即可;(3)根据题中的多项式x3+y3因式分解方法求解即可.【详解】(1)因式分解的方法为提公因式法,公式法,分组分解法;故答案为:提公因式法,公式法(2)原式x2(x+y)y(x+y)(xy)(第四步)故答案为:(3)【点睛】本题考查了因式分解,掌握因式分解的方法是解题的关键.