2022年沪教版七年级数学第二学期第十四章三角形同步测评练习题(精选).docx

上传人:知****量 文档编号:28185605 上传时间:2022-07-26 格式:DOCX 页数:42 大小:969.14KB
返回 下载 相关 举报
2022年沪教版七年级数学第二学期第十四章三角形同步测评练习题(精选).docx_第1页
第1页 / 共42页
2022年沪教版七年级数学第二学期第十四章三角形同步测评练习题(精选).docx_第2页
第2页 / 共42页
点击查看更多>>
资源描述

《2022年沪教版七年级数学第二学期第十四章三角形同步测评练习题(精选).docx》由会员分享,可在线阅读,更多相关《2022年沪教版七年级数学第二学期第十四章三角形同步测评练习题(精选).docx(42页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、沪教版七年级数学第二学期第十四章三角形同步测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,和是对应角,和是对应边,则下列结论中一定成立的是( )ABCD2、已知三条线段的长分别是4,4,m,若它

2、们能构成三角形,则整数m的最大值是( )A10B8C7D43、如图:将一张长为40cm的长方形纸条按如图所示折叠,若AB=3BC,则纸条的宽为( ) A12B14C16D184、根据下列已知条件,不能画出唯一的是( )A,B,C,D,5、下列长度的三条线段能组成三角形的是( )A3,4,7B3,4,8C3,4,5D3,3,76、如图,等边中,D为AC中点,点P、Q分别为AB、AD上的点,在BD上有一动点E,则的最小值为( )A7B8C10D127、若三条线段中a3,b5,c为奇数,那么以a、b、c为边组成的三角形共有( )A1个B2个C3个D4个8、如图,BAD90,AC平分BAD,CBCD,

3、则B与ADC满足的数量关系为()ABADCB2BADCCB+ADC180DB+ADC909、如图,ABC的面积为18,AD平分BAC,且ADBD于点D,则ADC的面积是()A8B10C9D1610、如图点在同一条直线上,都是等边三角形,相交于点O,且分别与交于点,连接,有如下结论:;为等边三角形;.其中正确的结论个数是( )A1个B2个C3个D4个第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在RtABC中,C90,两锐角的角平分线交于点P,点E、F分别在边BC、AC上,且都不与点C重合,若EPF45,连接EF,当AC6,BC8,AB10时,则CEF的周长为 _

4、2、两角和它们的夹边分别相等的两个三角形全等(可以简写成 _)3、如图,在中,BD和CD分别是和的平分线,EF过点D,且,若,则EF的长为_4、ABC的高AD所在直线与高BE所在直线相交于点F且DFCD,则ABC_5、一个等腰三角形的一边长为2,另一边长为9,则它的周长是_三、解答题(10小题,每小题5分,共计50分)1、如图,等边ABC中,点D在BC上,CE=CD,BCE=60,连接AD、BE(1)如图1,求证:AD=BE;(2)如图2,延长AD交BE于点F,连接DE、CF,在不添加任何辅助线和其它字母的情况下,请直接写出等于120的角2、如图,E为BC中点,DE平分(1)求证:平分;(2)

5、求证:;(3)求证:3、在等腰中,点D是BC边上的一个动点(点D不与点B,C重合),连接AD,作等腰,使,点D,E在直线AC两旁,连接CE(1)如图1,当时,直接写出BC与CE的位置关系;(2)如图2,当时,过点A作于点F,请你在图2中补全图形,用等式表示线段BD,CD,之间的数量关系,并证明4、如图,点D在AC上,BC,DE交于点F,(1)求证:;(2)若,求CDE的度数5、如图,在等边中,D为BC边上一点,连接AD,将沿AD翻折得到,连接BE并延长交AD的延长线于点F,连接CF(1)若,求的度数;(2)若,求的大小;(3)猜想CF,BF,AF之间的数量关系,并证明6、如图,在ABC中,AB

6、AC,M,N分别是AB,AC边上的点,并且MNBC(1)AMN是否是等腰三角形?说明理由;(2)点P是MN上的一点,并且BP平分ABC,CP平分ACB求证:BPM是等腰三角形;若ABC的周长为a,BCb(a2b),求AMN的周长(用含a,b的式子表示)7、如图,四边形中,于点(1)如图1,求证:;(2)如图2,延长交的延长线于点,点在上,连接,且,求证:;(3)如图3,在(2)的条件下,点在的延长线上,连接,交于点,连接,且,当,时,求的长8、已知POQ=120,点A,B分别在OP,OQ上,OAOB,连接AB,在AB上方作等边ABC,点D是BO延长线上一点,且AB=AD,连接AD(1)补全图形

7、;(2)连接OC,求证:COP=COQ;(3)连接CD,CD交OP于点F,请你写出一个DAB的值,使CD=OB+OC一定成立,并证明9、已知:(1)O是BAC内部的一点如图1,求证:BOCA;如图2,若OAOBOC,试探究BOC与BAC的数量关系,给出证明(2)如图3,当点O在BAC的外部,且OAOBOC,继续探究BOC与BAC的数量关系,给出证明10、 “三等分角”是被称为几何三大难题的三个古希腊作图难题之一如图1所示的“三等分角仪”是利用阿基米德原理做出的这个仪器由两根有槽的棒PA,PB组成,两根棒在P点相连并可绕点P旋转,C点是棒PA上的一个固定点,点A,O可在棒PA,PB内的槽中滑动,

8、且始终保持OAOCPCAOB为要三等分的任意角则利用“三等分角仪”可以得到APB AOB我们把“三等分角仪”抽象成如图2所示的图形,完成下面的证明已知:如图2,点O,C分别在APB的边PB,PA上,且OAOCPC求证:APB AOB-参考答案-一、单选题1、D【分析】根据全等三角形的性质求解即可【详解】解:,和是对应角,和是对应边,选项A、B、C错误,D正确,故选:D【点睛】本题考查全等三角形的性质,熟练掌握全等三角形的性质是解答的关键2、C【分析】根据三角形三边关系列出不等式,根据不等式的解集求整数m的最大值【详解】解:条线段的长分别是4,4,m,若它们能构成三角形,则,即又为整数,则整数m

9、的最大值是7故选C【点睛】本题考查了求不等式的整数解,三角形三边关系,根据三角形的三边关系列出不等式是解题的关键3、B【分析】如图,延长NO交AD的延长线于点P,设BC=x,则AB=3x,利用折叠的性质和等腰直角三角形的性质可表示出纸条的宽MO,NO的长,从而可表示出纸条的长2PN的长,然后根据长方形纸条的长为40,可得到关于x的方程,解方程求出x的值,即可求出纸条的宽【详解】解:如图,延长NO交AD的延长线于点P, 设BC=x,则AB=3x, 折叠, AB=BM=CO=CD=PO=3x, 纸条的宽为:MO=NO=3x+3x+x=7x, 纸条的长为:2PN=2(7x+3x)=20x=40 解得

10、:x=2, 纸条的宽NO=72=14 故答案为:B【点睛】此题考查了折叠的性质,等腰直角三角形的性质,一元一次方程应用题,解题的关键是正确分析题目中的等量关系列出方程求解4、B【分析】根据三角形存在的条件去判断【详解】,满足ASA的要求,可以画出唯一的三角形,A不符合题意;,A不是AB,BC的夹角,可以画出多个三角形,B符合题意;,满足SAS的要求,可以画出唯一的三角形,C不符合题意;,AB最大,可以画出唯一的三角形,D不符合题意;故选B【点睛】本题考查了三角形的存在性,熟练掌握三角形全等的判定方法是解题的关键5、C【分析】根据组成三角形的三边关系依次判断即可【详解】A、 3,4,7中3+4=

11、7,故不能组成三角形,与题意不符,选项错误B、 3,4,8中3+48,故不能组成三角形,与题意不符,选项错误C、 3,4,5中任意两边之和都大于第三边,任意两边之差都小于第三边,故能组成三角形,符合题意,选项正确D、 3,3,7中3+37,故不能组成三角形,与题意不符,选项错误故选:C【点睛】本题考查了三角形的三边关系,在一个三角形中,任意两边之和大于第三边,任意两边之差小于第三边6、C【分析】作点关于的对称点,连接交于,连接,此时的值最小,最小值,据此求解即可【详解】解:如图,是等边三角形,D为AC中点,作点关于的对称点,连接交于,连接,此时的值最小最小值,是等边三角形,的最小值为故选:C【

12、点睛】本题考查等边三角形的性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型7、C【分析】根据三角形的三边关系,得到合题意的边,进而求得三角形的个数【详解】解:c的范围是:53c5+3,即2c8c是奇数,c3或5或7,有3个值则对应的三角形有3个故选:C【点睛】本题主要考查了三角形三边关系,准确分析判断是解题的关键8、C【分析】由题意在射线AD上截取AE=AB,连接CE,根据SAS不难证得ABCAEC,从而得BC=EC,B=AEC,可求得CD=CE,得CDE=CED,证得B=CDE,即可得出结果【详解】解:在射线AD上截取AEAB,连接CE,如图所示:B

13、AD90,AC平分BAD,BACEAC,在ABC与AEC中,ABCAEC(SAS),BCEC,BAEC,CBCD,CDCE,CDECED,BCDE,ADC+CDE180,ADC+B180故选:C【点睛】本题主要考查全等三角形的判定与性质,解答的关键是作出适当的辅助线AE,CE9、C【分析】延长BD交AC于点E,根据角平分线及垂直的性质可得:,依据全等三角形的判定定理及性质可得:,再根据三角形的面积公式可得:SABD=SADE,SBDC=SCDE,得出SADC=12SABC,求解即可【详解】解:如图,延长BD交AC于点E,AD平分,在和中,SABD=SADE,SBDC=SCDE,SADC=12S

14、ABC=1218=9,故选:C【点睛】题目主要考查全等三角形的判定和性质,角平分线的定义等,熟练掌握基础知识,进行逻辑推理是解题关键10、D【分析】由SAS即可证明,则正确;有CAE=CDB,然后证明ACMDCN,则正确;由CM=CN,MCN=60,即可得到为等边三角形,则正确;由ADCE,则DAO=NEO=CBN,由外角的性质,即可得到答案【详解】解:DAC和EBC均是等边三角形,AC=CD,BC=CE,ACD=BCE=60,ACD+DCE=BCE+DCE,即ACE=BCD,MCN=180-ACD-BCE=60,在ACE和DCB中,ACEDCB(SAS),则正确;AE=BD,CAE=CDB,

15、在ACM和DCN中,ACMDCN(ASA),CM=CN,;则正确;MCN=60,为等边三角形;则正确;DAC=ECB=60,ADCE,DAO=NEO=CBN,;则正确;正确的结论由4个;故选D【点睛】本题考查了等边三角形的性质与判定,全等三角形的判定与性质,平行线的性质与判定,综合性较强,但难度不是很大,准确识图找出全等三角形是解题的关键二、填空题1、4【分析】根据题意过点P作PMBC于M,PNAC于N,PKAB于K,在EB上取一点J,使得MJ=FN,连接PJ,进而利用全等三角形的性质证明EF=EM+EN,即可得出结论【详解】解:如图,过点P作PMBC于M,PNAC于N,PKAB于K,在EB上

16、取一点J,使得MJFN,连接PJBP平分BC,PA平分CAB,PMBC,PNAC,PKAB,PMPK,PKPN,PMPN,CPMCPNC90,四边形PMCN是矩形,四边形PMCN是正方形,CMPM,MPN90,在PMJ和PNF中,PMJPNF(SAS),MPJFPN,PJPF,JPFMPN90,EPF45,EPFEPJ45,在PEF和PEJ中,PEFPEJ(SAS),EFEJ,EFEM+FN,CEF的周长CE+EF+CFCE+EM+CF+FN2EM2PM,SABCBCAC(AC+BC+AB)PM,PM2,ECF的周长为4,故答案为:4【点睛】本题考查角平分线的性质定理,正方形的判定,全等三角形

17、的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问2、角边角或【分析】根据全等三角形的判定定理得出即可【详解】解答:解:两角和它们的夹边分别相等的两个三角形全等,简写成角边角或ASA,故答案为:角边角或ASA【点睛】本题考查了全等三角形的判定定理,掌握全等三角形的判定定理是解题的关键3、7【分析】根据角平分线的定义和平行线的性质证明EBD=EDB,FDC=FCD,得到BE=DE,CF=DF,即可求解【详解】解:EFBC,EDB=DBC,FDC=DCB,又BD和CD分别是ABC和ACB的平分线,EBD=DBC,FCD=DCB,EBD=EDB,FDC=FCD,BE=DE,CF

18、=DF,又BE=3,CF=4,EF=DE+DF=BE+CF=7故答案为:7【点睛】本题主要考查了平行线的性质,角平分的定义,等腰三角形的性质与判定,熟知相关知识是解题的关键4、45或135【分析】根据题意,分两种情况讨论:当为锐角三角形时;当为钝角三角形时;作出相应图形,然后利用全等三角形的判定证明三角形全等,根据其性质及各角直角的等量关系即可得【详解】解:如图所示:当为锐角三角形时,在BDF与中,BDFADC,;如图所示:当为钝角三角形时,在BDF与中,BDFADC,综合可得:为或,故答案为:或【点睛】题目主要考查全等三角形的判定和性质,等腰三角形的性质,根据题意进行分类讨论,作出相应图形是

19、解题关键5、20【分析】题目给出等腰三角形有两条边长为2和9,而没有明确腰、底分别是多少,所以要进行讨论,还要应用三角形的三边关系验证能否组成三角形【详解】解:分两种情况:当腰为2时,229,所以不能构成三角形;当腰为9时,299,所以能构成三角形,周长是:29920故答案为:20【点睛】本题考查了等腰三角形的性质和三角形的三边关系;已知没有明确腰和底边的题目一定要想到两种情况,分类进行讨论,还应验证各种情况是否能构成三角形进行解答,这点非常重要,也是解题的关键三、解答题1、(1)见解析;(2)等于120的角有BFC、BDE、DFE=120【分析】(1)利用SAS证明ADCBEC,即可证明AD

20、=BE;(2)证明CDE为等边三角形,可求得BDE=120;利用全等三角形的性质可求得BFD=BCA=60,推出DFE=120;同理可推出BFC=AFC+BFD=120【详解】(1)证明:等边ABC中,CA=CB,ACB=60,CE=CD,BCE=60,ADCBEC(SAS),AD=BE;(2)等于120的角有BFC、BDE、DFE=120CE=CD,BCE=60,CDE为等边三角形,CDE=60,BDE=120;ADCBEC,DAC=EBC,又BDF=ADC,BFD=BCA=60,DFE=120;同理可求得AFC=ABC=60,BFC=AFC+BFD=120;综上,等于120的角有BFC、B

21、DE、DFE=120【点睛】本题考查了全等三角形的判定和性质,等边三角形的判定和性质,熟记各图形的性质并准确识图是解题的关键2、(1)见解析;(2)见解析;(3)见解析【分析】(1)延长DE交AB延长线于F,由B=C=90,推出ABCD,则CDE=F,再由DE平分ADC,即可推出ADF=F,得到AD=AF,即ADF是等腰三角形,然后证明CDEBFE得到DE=FE,即E是DF的中点,即可证明AE平分BAD;(2)由(1)即可用三线合一定理证明;(3)由CDEBFE,得到CD=BF,则AD=AF=AB+BF=AB+CD【详解】解:(1)如图所示,延长DE交AB延长线于F,B=C=90,ABCD,C

22、DE=F,DE平分ADC,CDE=ADE,ADF=F,AD=AF,ADF是等腰三角形,E是BC的中点,CE=BE,CDEBFE(AAS),DE=FE,E是DF的中点,AE平分BAD;(2)由(1)得ADF是等腰三角形,AD=AF,E是DF的中点,AEDE;(3)CDEBFE,CD=BF,AD=AF=AB+BF=AB+CD【点睛】本题主要考查了平行线的性质与判定,全等三角形的性质与判定,等腰三角形的性质与判定,熟知相关知识是解题的关键3、(1)(2)或,见解析【分析】(1)根据已知条件求出B=ACB=45,证明BADCAE,得到ACE=B=45,求出BCE=ACB+ACE=90,即可得到结论;(

23、2)根据题意作图即可,证明得到,推出延长EF到点G,使,证明,推出由此得到同理可证(1)解:,B=ACB=45,即BAD=CAE,BADCAE,ACE=B=45,BCE=ACB+ACE=90,;(2)解:如图,补全图形;证明:,又,延长EF到点G,使,如图,同理可证【点睛】此题考查了全等三角形的判定及性质,等腰三角形的性质,熟记全等三角形的判定及性质是解题的关键掌握分类思想解题是难点4、(1)证明见解析;(2)CDE=20【分析】(1)由“SAS”可证ABCDBE;(2)由全等三角形的性质可得C=E,由三角形的外角性质可求解(1)证明:ABD=CBE,ABD+DBC=CBE+DBC,即:ABC

24、=DBE,在ABC和DBE中,ABCDBE(SAS);(2)解:由(1)可知:ABCDBE,C=E,DFB=C+CDE,DFB=E+CBE,CDE=CBE,ABD=CBE=20,CDE=20【点睛】本题考查了全等三角形的判定和性质,三角形的外角性质,证明三角形全等是解题的关键5、(1)20;(2);(3)AF= CF+BF,理由见解析【分析】(1)由ABC是等边三角形,得到AB=AC,BAC=ABC=60,由折叠的性质可知,EAD=CAD=20,AC=AE,则BAE=BAC-EAD-CAD=20,AB=AE,CBF=ABE-ABC=20;(2)同(1)求解即可;(3)如图所示,将ABF绕点A逆

25、时针旋转60得到ACG,先证明AEFACF得到AFE=AFC,然后证明AFE=AFC=60,得到BFC=120,即可证明F、C、G三点共线,得到AFG是等边三角形,则AF=GF=CF+CG=CF+BF【详解】解:(1)ABC是等边三角形,AB=AC,BAC=ABC=60,由折叠的性质可知,EAD=CAD=20,AC=AE,BAE=BAC-EAD-CAD=20,AB=AE,CBF=ABE-ABC=20;(2)ABC是等边三角形,AB=AC,BAC=ABC=60,由折叠的性质可知,AC=AE, ,AB=AE,;(3)AF= CF+BF,理由如下:如图所示,将ABF绕点A逆时针旋转60得到ACG,A

26、F=AG,FAG=60,ACG=ABF,BF=CG在AEF和ACF中,AEFACF(SAS),AFE=AFC,CBF+BCF+BFD+CFD=180,CAF+CFA+ACD+CFD=180,BFD=ACD=60,AFE=AFC=60,BFC=120,BAC+BFC=180,ABF+ACF=180,ACG+ACF=180,F、C、G三点共线,AFG是等边三角形,AF=GF=CF+CG=CF+BF【点睛】本题主要考查了等边三角形的性质与判定,旋转的性质,折叠的性质,全等三角形的性质与判定,三角形内角和定理,熟知相关知识是解题的关键6、(1)AMN是是等腰三角形;理由见解析;(2)证明见解析;ab【

27、分析】(1)由等腰三角形的性质得到ABC=ACB,由平行线的性质得到AMN=ABC,ANM=ACB,于是得到AMN=ANM,根据等角对等边即可证得结论;(2)由角平分线的定义得到PBM=PBC,由平行线的性质得到MPB=PBC,于是得到PBM=MPB,根据等角对等边即可证得结论;由知MB=MP,同理可得:NC=NP,故AMN的周长=AB+AC,再根据已知条件即可求出结果(1)解:AMN是是等腰三角形,理由如下:ABAC,ABCACB,MNBC,AMNABC,ANMACB,AMNANM,AMAN,AMN是等腰三角形;(2)证明:BP平分ABC,PBMPBC,MNBC,MPBPBCPBMMPB,M

28、BMP,BPM是等腰三角形;由知MBMP,同理可得:NCNP,AMN的周长AM+MP+NP+ANAM+MB+NC+ANAB+AC,ABC的周长为a,BCb,AB+AC+ba,AB+ACabAMN的周长ab【点睛】本题考查了等腰三角形的性质和判定,平行线的性质,列代数式,能够灵活应用这些性质是解决问题的关键7、(1)见解析;(2)见解析;(3)2【分析】(1)过点B作于点Q,根据AAS证明得,再证明四边形是矩形得BQ=CG,从而得出结论;(2) 在GF上截取GH=GE,连接AH,证明AH=FH,GE=GH即可;(3) 过点A作于点P,在FC上截取,连接,证明得,可证明AC是EH的垂直平分线,再证

29、明和得可求出,从而可得结论【详解】解:(1)证明:过点B作于点Q,如图1又,四边形是矩形;(2)在GF上截取GH=GE,连接AH,如图2,又(3)过点A作于点P,在FC上截取,连接,如图3,由(1)、(2)知,AC是EH的垂直平分线,又, ,即 ,即 在和中,AH=AMHAB=MADAB=AD 【点睛】本题考查的是全等三角形的判定和性质,掌握全等三角形的判定定理和性质定理是解题的关键8、(1)见解析;(2)见解析;(3)DAB=150,见解析【分析】(1)依据题意作出相应图形即可;(2)在BQ上截取BE=AO,连接CE,由等边三角形的性质得,CA=CB,ACB=60由同角的补角相等得CAO=C

30、BE,由SAS证得CAO和CBE全等,即可得证;(3)由DAB=150, DA=AB,得ADB=ABD=15,由等边三角形性质,可得CAB=CBA=ACB =60,故CAD=150,由等边对等角得ADC=ACD=15,由此DBC=DCB=75,由等角对等边得DB=DC 再由POQ=120,BDC=30,得DFO=90,等量代换即可得证.【详解】解:(1)如图所示:(2)证明如下:在BQ上截取BE=AO,连接CE,ABC为等边三角形,CA=CB,ACB=60POQ=120,CAO+CBO=180CBO+CBE=180,CAO=CBE,在CAO和CBE中,CAOCBE(SAS),CO=CE,COA

31、=CEB,COE=CEB,COP=COQ; (3)DAB=150,如图:DAB=150, DA=AB,ADB=ABD=15ABC为等边三角形,CAB=CBA=ACB =60,CAD=150,AD=AC,ADC=ACD=15,DBC=DCB=75,DB=DC,POQ=120,BDC=30,DFO=90AD=AC,DF=FCDO=OC DB=DO+OB,DB=CO+OB,CD= OB + OC.【点睛】此题考查全等三角形的判定和性质、等腰三角形的判定和性质,等边三角形的判定和性质,以及添加辅助线构造全等三角形,掌握相应的判定和性质是解答此题的关键.9、(1)见解析;BOC2A,见解析;(2)BOC

32、2BAC,见解析【分析】(1)连接AO并延长AO至点E,根据三角形外角性质解答即可;延长AO至点E,根据三角形外角性质解答即可;(2)根据三角形外角性质和三角形内角和定理解答即可【详解】证明:(1)如图所示:连接AO并延长AO至点E,则BOEBAO,COECAO,BOCA;BOC与BAC的数量关系:BOC2A;证明:如图所示,延长AO至点E,则BOEBAO+B,COECAO+C,OAOBOC,BAOB,CAOC,BOCCOE+COEBAO+B+CAO+C2(BAO+CAO)2BAC;(2)BOC与BAC的数量关系:BOC2BAC;证明:如图所示,设Bx, OAOBOC,BBAOx,COACBAC+x;在BEO和AEC中,有:B+BOCC+CAE;即x+BOCCAE+x+CAE2BAC+x;即BOC2BAC【点睛】此题考查三角形综合题,关键是根据三角形外角性质和三角形内角和定理解答10、见解析【分析】由,得出为等腰三角形,由外角的性质及等量代换得,再次利用外角的性质及等量代换得,即可证明【详解】解:,为等腰三角形,由外角的性质得:,再由外角的性质得:,【点睛】本题考查了等腰三角形、外角的性质、解题的关键是掌握外角的性质及等量代换的思想进行求解

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁