《2022年强化训练北师大版八年级数学下册第四章因式分解专题测试试题(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年强化训练北师大版八年级数学下册第四章因式分解专题测试试题(无超纲).docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第四章因式分解专题测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列分解因式正确的是( )ABCD2、若,则的值为( )ABCD3、把多项式x32x2+x分解因式结果正确的是(
2、 )Ax(x22x)Bx2(x2)Cx(x+1)(x1)Dx(x1)24、下列各式由左边到右边的变形中,是因式分解的为( )Aa(x+y)ax+ayB10x25x5x(2x1)Cx24x+4(x4)2Dx216+3x(x+4)(x4)+3x5、不论x,y取何实数,代数式x24xy26y13总是( )A非负数B正数C负数D非正数6、已知abc为ABC的三条边边长,且满足等式a22b2c22ab2bc0,则ABC的形状为( )A等腰三角形B等边三角形C直角三角形D钝角三角形7、如果多项式x25x+c可以用十字相乘法因式分解,那么下列c的取值正确的是()A2B3C4D58、下列各式中,能用完全平方公
3、式分解因式的是()ABCD 9、已知a+b=2,a-b=3,则等于( )A5B6C1D10、把多项式a29a分解因式,结果正确的是()Aa(a+3)(a3)Ba(a9)C(a3)2D(a+3)(a3)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、多项式a34a可因式分解为_2、因式分解:_3、把多项式3a26a+3因式分解得 _4、已知a,则a22a3的值为_5、分解因式:3y212_三、解答题(5小题,每小题10分,共计50分)1、已知、满足2|2012|=2-1 求的值2、已知xy5,x2yxy2x+y40(1)求xy的值(2)求x2+y2的值3、(1)若x+1是
4、多项式x3+ax+1的因式,求a的值并将多项式x3+ax+1分解因式(2)若多项式3x4+ax3+bx-34含有因式x+1及x-2,求a+b的值4、(1)运用乘法公式计算:;(2)分解因式:5、分解因式(1); (2)-参考答案-一、单选题1、C【分析】根据因式分解的方法逐个判断即可【详解】解:A. ,原选项错误,不符合题意;B. ,原选项错误,不符合题意;C. ,正确,符合题意;D. ,原选项错误,不符合题意;故选:C【点睛】本题考查了因式分解,解题关键是熟练运用提取公因式法和公式法进行因式分解2、B【分析】根据算术平方根、偶次方的非负性确定a和b的值,然后代入计算【详解】解:,解得,所以故
5、选:B【点睛】本题考查的是配方法的应用、非负数的性质,灵活运用配方法、掌握当几个非负数相加和为0时,则其中的每一项都必须等于0是解题的关键3、D【分析】先提取公因式,再按照完全平方公式分解即可得到答案.【详解】解:x32x2+x 故选D【点睛】本题考查的是综合利用提公因式与公式法分解因式,掌握“利用完全平方公式分解因式”是解本题的关键.4、B【分析】根据因式分解定义,把一个多项式化为几个整式的积的形式,对各选项进行一一分析即可【详解】解:A. a(x+y)ax+ay,多项式乘法,故选项A不合题意B. 10x25x5x(2x1)是因式分解,故选项B符合题意;C. x24x+4(x2)2因式分解不
6、正确,故选项C不合题意;D. x216+3x(x+4)(x4)+3x,不是因式分解,故选项D不符合题意故选B【点睛】本题考查因式分解,掌握因式分解的定义是解题关键5、A【分析】先把原式化为,结合完全平方公式可得原式可化为从而可得答案.【详解】解:x24xy26y13 故选A【点睛】本题考查的是代数式的值,非负数的性质,利用完全平方公式分解因式,掌握“”是解本题的关键.6、B【分析】首先利用分组分解法对已知等式的左边进行因式分解,再根据三角形的三边关系得到,从而得到答案【详解】解:a22b2c22ab2bc0;为等边三角形故选B【点睛】本题考查了因式分解的应用、非负数的性质、等边三角形的判断,以
7、及灵活利用因式分解建立与方程之间的关系来解决问题7、C【分析】根据十字相乘法进行因式分解的方法,对选项逐个判断即可【详解】解:A、,不能用十字相乘法进行因式分解,不符合题意;B、,不能用十字相乘法进行因式分解,不符合题意;C、,能用十字相乘法进行因式分解,符合题意;D、,不能用十字相乘法进行因式分解,不符合题意;故选C【点睛】此题考查了十字相乘法进行因式分解,解题的关键是掌握十字相乘法进行因式分解8、D【分析】根据完全平方公式法分解因式,即可求解【详解】解:A、不能用完全平方公式因式分解,故本选项不符合题意;B、不能用完全平方公式因式分解,故本选项不符合题意;C、不能用完全平方公式因式分解,故
8、本选项不符合题意;D、能用完全平方公式因式分解,故本选项符合题意;故选:D【点睛】本题主要考查了完全平方公式法分解因式,熟练掌握 是解题的关键9、B【分析】根据平方差公式因式分解即可求解【详解】a+b=2,a-b=3,故选B【点睛】本题考查了根据平方差公式因式分解,掌握平方差公式是解题的关键10、B【分析】用提公因式法,提取公因式即可求解【详解】解:a29aa(a9)故选:B【点睛】本题考查了因式分解,用到了提公因式法和公式法,因式分解一般是先考虑提公因式法,再考虑公式法,注意的是,因式分解要进行到再也不能分解为止二、填空题1、【分析】利用提公因式法、公式法进行因式分解即可【详解】解:原式=,
9、故答案为:【点睛】本题考查提公因式法、公式法分解因式,掌握公式的结构特征是正确应用的前提2、【分析】原式提取公因式y2,再利用平方差公式分解即可【详解】解:原式=,故答案为:【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解题的关键3、3(a-1)2【分析】首先提取公因式3,再利用完全平方公式分解因式【详解】解:3a2-6a+3=3(a2-2a+1)=3(a-1)2,故答案为:3(a-1)2【点睛】本题主要考查了综合提公因式和公式法分解因式,熟记公式结构是解题的关键4、-2【分析】将所求算式因式分解,再将代入,整理,最后利用平方差公式计算即可【详解】解: ,将代入得:故
10、答案为:-2【点睛】本题考查因式分解,代数式求值以及平方差公式利用整体代入的思想是解答本题的关键5、【分析】先提取公因式3,然后再根据平方差公式进行因式分解即可【详解】解:;故答案为【点睛】本题主要考查因式分解,熟练掌握因式分解是解题的关键三、解答题1、1【分析】先把等式右边利用完全平方公式分解因式即可得到则,然后根据非负数的性质求解即可【详解】解:,【点睛】本题主要考查了非负数的性质,因式分解的应用和代数式求值,解题的关键在于能够熟练掌握非负数的性质和因式分解2、(1)xy10;(2)x2+y2110【分析】(1)利用提取公因式法对(x2yxy2x+y)进行因式分解,代入求值即可(2)利用完
11、全平方公式进行变形处理得到:x2+y2(xy)2+2xy,代入求值即可【详解】解:(1)xy5,x2yxy2x+y40,x2yxy2x+yxy(xy)(xy)(xy1)(xy)xy5,(51)(xy)40,xy10(2)x2+y2(xy)2+2xy10225110【点睛】本题考查了因式分解和完全平方公式,做题的关键是掌握完全平方公式的变形x2+y2(xy)2+2xy3、(1)a=0;(x+1)(x2x+1);(2)31;【分析】(1)先将x=1代入x3+ax+1=0中,得a=0,令x3+1=(x+1)(x2+bx+c),根据等式两边x同次幂的系数相等确定b、c的值,再因式分解多项式;(2)设3
12、x4+ax3+bx34=(x+1)(x2)M,则x=1,x=2是方程3x4+ax3+bx34=0的解,然后解关于a、b的方程组,即可得到答案【详解】解:(1)x+1是多项式x3+ax+1的因式,当x=1时,x3+ax+1=0,1a+1=0,a=0,令x3+1=(x+1)(x2+bx+c),而(x+1)(x2+bx+c)=x3+(b+1)x2+(c+b)x+c,等式两边x同次幂的系数相等,即x3+(b+1)x2+(c+b)x+c=x3+1,解得:,a的值为0,x3+1=(x+1)(x2x+1);(2)设3x4+ax3+bx34=(x+1)(x2)M(其中M为二次整式),x=1,x=2是方程3x4
13、+ax3+bx34=0的解,a+b=8+(39)=31;【点睛】本题考查了分解因式,因式分解的应用,解二元一次方程组,解题的关键是掌握因式分解的方法,从而进行解题4、(1);(2)【分析】(1)把(3y-2)看作一个整体,然后利用平方差公式及完全平方公式进行求解即可;(2)先部分提公因式,然后再利用完全平方公式进行因式分解即可【详解】解:(1)=;(2)=【点睛】本题主要考查整式的混合运算及因式分解,熟练掌握乘法公式是解题的关键5、(1);(2).【分析】(1)先提取公因式 再利用完全平方公式进行分解即可;(2)先把原式化为:,再提取公因式 再利用平方差公式进行分解即可.【详解】(1)解:原式= = (2)解:原式= = =【点睛】本题考查的是综合提公因式与公式法分解因式,易错点是分解因式不彻底,注意一定要分解到每个因式都不能再分解为止.