2022年最新沪教版七年级数学第二学期第十四章三角形定向测评试题(无超纲).docx

上传人:知****量 文档编号:28184502 上传时间:2022-07-26 格式:DOCX 页数:28 大小:598.28KB
返回 下载 相关 举报
2022年最新沪教版七年级数学第二学期第十四章三角形定向测评试题(无超纲).docx_第1页
第1页 / 共28页
2022年最新沪教版七年级数学第二学期第十四章三角形定向测评试题(无超纲).docx_第2页
第2页 / 共28页
点击查看更多>>
资源描述

《2022年最新沪教版七年级数学第二学期第十四章三角形定向测评试题(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年最新沪教版七年级数学第二学期第十四章三角形定向测评试题(无超纲).docx(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、沪教版七年级数学第二学期第十四章三角形定向测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、小明把一副含有45,30角的直角三角板如图摆放其中CF90,A45,D30,则a+等于( )A180B210C

2、360D2702、若三条线段中a3,b5,c为奇数,那么以a、b、c为边组成的三角形共有( )A1个B2个C3个D4个3、如图,等腰ABC中,ABAC,点D是BC边中点,则下列结论不正确的是( )ABCBADBCCBADCADDAB2BC4、满足下列条件的两个三角形不一定全等的是( )A周长相等的两个三角形B有一腰和底边对应相等的两个等腰三角形C三边都对应相等的两个三角形D两条直角边对应相等的两个直角三角形5、若等腰三角形的一个外角是70,则它的底角的度数是( )A110B70C35D556、如图,在ABC中,BD平分ABC,C2CDB,AB12,CD3,则ABC的周长为()A21B24C27

3、D307、下列三个说法:有一个内角是30,腰长是6的两个等腰三角形全等;有一个内角是120,底边长是3的两个等腰三角形全等;有两条边长分别为5,12的两个直角三角形全等其中正确的个数有( )A3B2C1D08、BDE和FGH是两个全等的等边三角形,将它们按如图的方式放置在等边三角形ABC内若BC5,则五边形DECHF的周长为()A8B10C11D129、如图,等腰中,于D,点O是线段AD上一点,点P是BA延长线上一点,若,则下列结论:;是等边三角形;其中正确的是( )ABCD10、如图,在ABC和DEF中,AD,AFDC,添加下列条件中的一个仍无法证明ABCDEF的是()ABCEFBABDEC

4、BEDACBDFE第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,BD,CE是等边三角形ABC的中线,BD,CE交于点F,则_2、在中,若,则_3、中,比大10,则_4、如图,在正方形网格中,BAC_DAE(填“”、“”或“”)5、如图,在ABC中,ACB=90,AC=BC,BECE于点E,ADCE于点D若AD=3cm,BE=1cm,则DE=_三、解答题(10小题,每小题5分,共计50分)1、一个零件形状如图所示,按规定应等于75,和应分别是18和22,某质检员测得,就断定这个零件不合格,请你运用三角形的有关知识说明零件不合格的理由2、如图,AD,BC相交于点O,

5、AODO(1)如果只添加一个条件,使得AOBDOC,那么你添加的条件是 (要求:不再添加辅助线,只需填一个答案即可);(2)根据已知及(1)中添加的一个条件,证明ABDC3、如图,是等边三角形,D点是BC上一点,于点E,CE交AD于点P求的度数4、如图,ABC中,ABAC,D为BC边的中点,AFAD,垂足为A求证:125、如图,在中,是的平分线,点在边上,且()求证:;()若,求的大小6、如图,在ABC中,CE平分ACB交AB于点E,AD是ABC边BC上的高,AD与CE相交于点F,且ACB80,求AFE的度数7、如图,在等边三角形ABC中,点D,E分别在边BC,AC上,且DEAB,过点E作EF

6、DE,交BC的延长线于点F(1)求证:CECF;(2)若CD2,求DF的长8、如图,在ABC中,ADBE,DAC10,AE是BAC的外角MAC的平分线,BF平分ABC交AE于点F,求AFB的度数9、已知,如图,ABAD,BD,1260 (1)求证:ADEABC; (2)求证:AECE10、已知:如图,求证:-参考答案-一、单选题1、B【分析】已知,得到,根据外角性质,得到,再将两式相加,等量代换,即可得解;【详解】解:如图所示,;故选D【点睛】本题主要考查了三角形外角定理的应用,准确分析计算是解题的关键2、C【分析】根据三角形的三边关系,得到合题意的边,进而求得三角形的个数【详解】解:c的范围

7、是:53c5+3,即2c8c是奇数,c3或5或7,有3个值则对应的三角形有3个故选:C【点睛】本题主要考查了三角形三边关系,准确分析判断是解题的关键3、D【分析】根据等腰三角形的等边对等角的性质及三线合一的性质判断【详解】解:ABAC,点D是BC边中点,BC,ADBC,BADCAD,故选:D【点睛】此题考查了等腰三角形的性质:等边对等角,三线合一,熟记等腰三角形的性质是解题的关键4、A【分析】根据全等三角形的判定方法求解即可判定三角形全等的方法有:SSS,SAS对各选项进行一一判断即可【详解】解:A、周长相等的两个三角形不一定全等,符合题意; B、有一腰和底边对应相等的两个等腰三角形根据三边对

8、应相等判定定理可判定全等,不符合题意;C、三边都对应相等的两个三角形根据三边对应相等判定定理可判定全等,不符合题意;D、两条直角边对应相等的两个直角三角形根据SAS判定定理可判定全等,不符合题意故选:A【点睛】此题考查了全等三角形的判定方法,解题的关键是熟练掌握全等三角形的判定方法判定三角形全等的方法有:SSS,SAS,AAS,ASA,HL(直角三角形)5、C【分析】先求出与这个外角相邻的内角的度数为,再根据三角形的内角和定理即可得【详解】解:等腰三角形的一个外角是,与这个外角相邻的内角的度数为,这个等腰三角形的顶角的度数为,底角的度数为,故选:C【点睛】本题考查了等腰三角形、三角形的内角和定

9、理等知识点,判断出等腰三角形的顶角的度数为是解题关键6、C【分析】根据题意在AB上截取BE=BC,由“SAS”可证CBDEBD,可得CDB=BDE,C=DEB,可证ADE=AED,可得AD=AE,进而即可求解【详解】解:如图,在AB上截取BEBC,连接DE,BD平分ABC,ABDCBD,在CBD和EBD中,CBDEBD(SAS),CDBBDE,CDEB,C2CDB,CDEDEB,ADEAED,ADAE,ABC的周长AD+AE+BE+BC+CDAB+AB+CD27,故选:C【点睛】本题考查全等三角形的判定和性质以及等腰三角形的性质,注意掌握添加恰当辅助线构造全等三角形是解题的关键7、C【分析】根

10、据三角形全等的判定方法,等腰三角形的性质和直角三角形的性质判断即可【详解】解:当一个是底角是30,一个是顶角是30时,两三角形就不全等,故本选项错误;有一个内角是120,底边长是3的两个等腰三角形全等,本选项正确;当一条直角边为12,一条斜边为12时,两个直角三角形不全等,故本选项错误;正确的只有1个,故选:C【点睛】本题考查了全等三角形的判定定理,等腰三角形的性质和直角三角形的性质,熟练掌握全等三角形的判定定理是解题的关键8、B【分析】证明AFHCHG(AAS),得出AF=CH由题意可知BE=FH,则得出五边形DECHF的周长=AB+BC,则可得出答案【详解】解:GFH为等边三角形,FH=G

11、H,FHG=60,AHF+GHC=120,ABC为等边三角形,AB=BC=AC=5,ACB=A=60,AHF=180-FHG-GHC =120-GHC,HGC=180-C-GHC =120-GHC,AHF=HGC,在AFH和CHG中,AFHCHG(AAS),AF=CHBDE和FGH是两个全等的等边三角形,BE=FH,五边形DECHF的周长=DE+CE+CH+FH+DF=BD+CE+AF+BE+DF,=(BD+DF+AF)+(CE+BE),=AB+BC=10故选:B【点睛】本题考查了全等三角形的判定与性质,等边三角形的性质,熟练掌握全等三角形的判定方法是解题的关键9、A【分析】利用等边对等角得:

12、APOABO,DCODBO,则APO+DCOABO+DBOABD,据此即可求解;因为点O是线段AD上一点,所以BO不一定是ABD的角平分线,可作判断;证明POC60且OPOC,即可证得OPC是等边三角形;证明OPACPE,则AOCE,得ACAE+CEAO+AP【详解】解:如图1,连接OB,ABAC,ADBC,BDCD,BADBAC12060,OBOC,ABC90BAD30OPOC,OBOCOP,APOABO,DCODBO,APO+DCOABO+DBOABD30,故正确;由知:APOABO,DCODBO,点O是线段AD上一点,ABO与DBO不一定相等,则APO与DCO不一定相等,故不正确;APC

13、+DCP+PBC180,APC+DCP150,APO+DCO30,OPC+OCP120,POC180(OPC+OCP)60,OPOC,OPC是等边三角形,故正确;如图2,在AC上截取AEPA,PAE180BAC60,APE是等边三角形,PEAAPE60,PEPA,APO+OPE60,OPE+CPECPO60,APOCPE,OPCP,在OPA和CPE中,OPACPE(SAS),AOCE,ACAE+CEAO+AP,ABAO+AP,故正确;正确的结论有:,故选:A【点睛】本题主要考查了全等三角形的判定与性质、等腰三角形的判定与性质、等边三角形的判定与性质等知识,正确作出辅助线是解决问题的关键10、A

14、【分析】根据AF=DC求出AC=DF,再根据全等三角形的判定定理逐个判断即可【详解】解:AF=DC,AF+FC=DC+FC,即AC=DF,A、BC=EF,AC=DF,A=D,不符合全等三角形的判定定理,不能推出ABCDEF,故本选项符合题意;B、AB=DE,A=D,AC=DF,符合全等三角形的判定定理SAS,能推出ABCDEF,故本选项不符合题意;CB=E,A=D,AC=DF,符合全等三角形的判定定理AAS,能推出ABCDEF,故本选项不符合题意;DACB=DFE,AC=DF,A=D,符合全等三角形的判定定理ASA,能推出ABCDEF,故本选项不符合题意;故选:A【点睛】本题考查了全等三角形的

15、判定定理,能熟记全等三角形的判定定理是解此题的关键,注意:全等三角形的判定定理有SAS,ASA,AAS,SSS,两直角三角形全等还有HL二、填空题1、120【分析】等边三角形中线与角平分线合一,有,由可求得结果【详解】解:是等边三角形BD,CE是等边三角形ABC的中线又故答案为:【点睛】本题考查了等边三角形的性质,角度的计算解题的关键在于熟练利用等边三角形三线合一的性质2、6565度【分析】由三角形的内角和定理,得到,即可得到答案;【详解】解:在中,;故答案为:65【点睛】本题考查了三角形的内角和定理,解题的关键是掌握三角形的内角和等于3603、70【分析】根据三角形内角和定理可得,由题意比大

16、,可得,组成方程组求解即可【详解】解:,比大,解得:,故答案为:【点睛】题目主要考查三角形内角和定理及二元一次方程组的应用,理解题意,列出代数式组成方程组是解题关键4、【分析】找到点,连接(见解析),根据等腰直角三角形的性质、网格特点即可得【详解】解;如图,找到点,连接,则是等腰直角三角形,又是等腰直角三角形,故答案为:【点睛】本题考查了等腰直角三角形、角的大小比较,正确找出点是解题关键5、2cm【分析】易证CAD=BCE,即可证明BECDAC,可得CD=BE,CE=AD,根据DE=CE-CD,即可解题【详解】解:ACB=90,BCE+DCA=90ADCE,DAC+DCA=90BCE=DAC,

17、在BEC和DAC中,BCE=DAC,BEC=CDA=90BC=AC,BECDAC(AAS),CE=AD=3cm,CD=BE=1cm,DE=CE-CD=3-1=2 cm故答案是:2cm【点睛】此题是三角形综合题,主要考查了全等三角形的判定,全等三角形对应边相等的性质,本题中求证CDABEC是解题的关键三、解答题1、不合格,理由见解析【分析】延长BD与AC相交于点E利用三角形的外角性质,可得,即可求解【详解】解:如图,延长BD与AC相交于点E是的一个外角,同理可得李师傅量得,不是115,这个零件不合格【点睛】本题主要考查了三角形的外角性质,熟练掌握三角形的一个外角等于与它不相邻的两个内角的和是解题

18、的关键2、(1)OB=OC(或,或);(2)见解析【分析】(1)根据SAS添加OB=OC即可;(2)由(1)得AOBDOC,由全等三角形的性质可得结论【详解】解:(1)添加的条件是:OB=OC(或,或)证明:在和中所以,AOBDOC(2)由(1)知,AOBDOC所以,ABDC【点睛】本题主要考查了全等三角形的判定与性质,熟练掌握全等三角形的判定方法是解答本题的关键3、【分析】由题意易得,则有,然后可得,进而可证,则有,最后问题可求解【详解】解:是等边三角形,(SAS),【点睛】本题主要考查等边三角形的性质、含30度直角三角形的性质及全等三角形的性质与判定,熟练掌握等边三角形的性质、含30度直角

19、三角形的性质及全等三角形的性质与判定是解题的关键4、见详解【分析】根据等腰三角形三合一性质以及等边对等角性质得出ADBC,B=C,根据AFAD,利用在同一平面内垂直同一直线的两直线平行得出AFBC,利用平行线性质得出1=B,2=C即可【详解】证明:ABC中,ABAC,D为BC边的中点,ADBC,B=C,AFAD,AFBC,1=B,2=C,12【点睛】本题考查等腰三角形性质,平行线的判定与性质,掌握等腰三角形性质,平行线的判定与性质是解题关键5、()见解析;()【分析】()由CD是的平分线得出,由得出从而得出,由平行线的判断即可得证;()由三角形内角和求出,由角平分线得出,由三角形内角和求出即可

20、得出答案【详解】()CD是的平分线,;(),【点睛】本题考查平行线的判定以及三角形内角和定理,掌握相关知识是解题的关键6、AFE=50【分析】根据CE平分ACB,ACB80,得出ECB=,根据高线性质得出ADC=90,根据三角形内角和得出DFC=180-ADC-ECB=180-90-40=50,利用对顶角性质得出AFE=DFC=50即可【详解】解:CE平分ACB,ACB80,ECB=,AD是ABC边BC上的高,ADBC,ADC=90,DFC=180-ADC-ECB=180-90-40=50,AFE=DFC=50【点睛】本题考查角平分线定义,垂线性质,三角形内角和,对顶角性质,掌握角平分线定义,

21、垂线性质,三角形内角和,对顶角性质是解题关键7、(1)证明见解析;(2)4【分析】(1)根据等边三角形的性质和平行线的性质可证得EDCECDDEC60,再根据直角定义和三角形的外角性质证得FFEC30,利用等角对等边即可证得结论;(2)由等角对等边可知CE=DC=2,结合(1)中结论即可求解(1)证明:ABC是等边三角形,ABACB60DEAB,BEDC60,ACED60,EDCECDDEC60,EFED,DEF90,F30F+FECECD60,FFEC30,CECF(2)解:由(1)可知EDCECDDEC60,CEDC2又CECF,CF2DFDC+CF2+24【点睛】本题考查等边三角形的性质

22、、等腰三角形的判定、平行线的性质、三角形的外角性质、线段的和与差,熟练掌握相关知识的联系与运用是解答的关键8、AFB40【分析】由题意易得ADC90,ACB80,然后可得,进而根据三角形外角的性质可求解【详解】解:ADBE,ADC90,DAC10,ACB90DAC901080,AE是MAC的平分线,BF平分ABC,又MAEABF+AFB,MACABC+ACB,AFBMAEABF【点睛】本题主要考查三角形外角的性质及角平分线的定义,熟练掌握三角形外角的性质及角平分线的定义是解题的关键9、(1)见解析;(2)见解析【分析】(1)根据12可推出DAE=BAC,然后结合全等三角形的判定定理进行证明;(2)由全等三角形的性质可得AEAC,结合260可推出AEC为等边三角形,据此证明【详解】(1)证明:12 1+2+ 即DAE=BAC在ADE和ABC中 ADEABC(ASA)(2)证明:ADEABC AEAC又260AEC为等边三角形AECE【点睛】此题考查了全等三角形的性质和判定,等边三角形的性质和判定,解题的关键是熟练掌握全等三角形的性质和判定方法,等边三角形的性质和判定方法10、证明见解析【分析】由,结合公共边 从而可得结论.【详解】证明:在与中, 【点睛】本题考查的是全等三角形的判定,掌握“利用边边边公理证明三角形全等”是解本题的关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁