《2022年精品解析京改版八年级数学下册第十五章四边形同步练习试卷(含答案详解).docx》由会员分享,可在线阅读,更多相关《2022年精品解析京改版八年级数学下册第十五章四边形同步练习试卷(含答案详解).docx(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版八年级数学下册第十五章四边形同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一个多边形纸片剪去一个内角后,得到一个内角和为2340的新多边形,则原多边形的边数为( )A14或15或16B15
2、或16或17C15或16D16或172、如图,在ABC中,AC=BC=8,BCA=60,直线ADBC于点D,E是AD上的一个动点,连接EC,将线段EC绕点C按逆时针方向旋转60得到FC,连接DF,则在点E的运动过程中,DF的最小值是( )A1B1.5C2D43、垦区小城镇建设如火如荼,小红家买了新楼爸爸在正三角形、正方形、正五边形、正六边形四种瓷砖中,只购买一种瓷砖进行平铺,有几种购买方式( )A1种B2种C3种D4种4、如图,已知正方形ABCD的边长为6,点E,F分别在边AB,BC上,BECF2,CE与DF交于点H,点G为DE的中点,连接GH,则GH的长为()ABC4.5D4.35、下列四个
3、图案中,是中心对称图形的是()ABCD6、如图,在平面直角坐标系中,矩形OABC的点A和点C分别落在x轴和y轴正半轴上,AO4,直线l:y3x+2经过点C,将直线l向下平移m个单位,设直线可将矩形OABC的面积平分,则m的值为()A7B6C4D87、下列图形中,是中心对称图形的是( )ABCD8、下列四个图形中,为中心对称图形的是()ABCD9、如图,将矩形纸片ABCD沿BD折叠,得到BCD,CD与AB交于点E,若140,则2的度数为()A25B20C15D1010、如图,已知E为邻边相等的平行四边形ABCD的边BC上一点,且DAE=B=80,那么CDE的度数为( )A20B25C30D35第
4、卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知一个多边形内角和1800度,则这个多边形的边数_2、已知一个多边形的内角和与外角和的比是2:1,则它的边数为 _3、判断:(1)菱形的对角线互相垂直且相等(_)(2)菱形的对角线把菱形分成四个全等的直角三角形(_)4、在平面直角坐标系中,点(2,5)关于原点对称的点的坐标是_5、一个正多边形的每一个内角比每一个外角的5倍还小60,则这个正多边形的边数为_三、解答题(5小题,每小题10分,共计50分)1、如图,是的中位线,延长到,使,连接求证:2、如图,已知在RtABC中,ACB90,CD是斜边AB上的中线,点E是边BC延
5、长线上一点,连接AE、DE,过点C作CFDE于点F,且DFEF (1)求证:ADCE (2)若CD5,AC6,求AEB的面积3、(1)如图,在中,求的度数(2)已知一个正多边形的内角和比它的外角和的倍多,求这个正多边形每个外角的度数4、(阅读材料)材料一:我们在小学学习过正方形,知道:正方形的四条边都相等,四个角都是直角;材料二:如图1,由一个等腰直角三角形和一个正方形组成的图形,我们要判断等腰直角三角形的面积与正方形的面积的大小关系,可以这样做:如图2,连接AC,BD,把正方形分成四个与等腰三角形ADE全等的三角形,所以(解决问题)如图3,图中由三个正方形组成的图形(1)请你直接写出图中所有
6、的全等三角形;(2)任意选择一组全等三角形进行证明;(3)设图中两个小正方形的面积分别为S1和S2,若,求S1和S2的值5、阅读材料,回答下列问题:(材料提出)“八字型”是数学几何的常用模型,通常由一组对顶角所在的两个三角形构成(探索研究)探索一:如图1,在八字形中,探索A、B、C、D之间的数量关系为 ;探索二:如图2,若B36,D14,求P的度数为 ;探索三:如图3,CP、AG分别平分BCE、FAD,AG反向延长线交CP于点P,则P、B、D之间的数量关系为 (模型应用)应用一:如图4,在四边形MNCB中,设M,N,+180,四边形的内角MBC与外角NCD的角平分线BP,CP相交于点P则A (
7、用含有和的代数式表示),P (用含有和的代数式表示)应用二:如图5,在四边形MNCB中,设M,N,+180,四边形的内角MBC与外角NCD的角平分线所在的直线相交于点P,P (用含有和的代数式表示)(拓展延伸)拓展一:如图6,若设Cx,By,CAPCAB,CDPCDB,试问P与C、B之间的数量关系为 (用x、y表示P)拓展二:如图7,AP平分BAD,CP平分BCD的邻补角BCE,猜想P与B、D的关系,直接写出结论 -参考答案-一、单选题1、A【分析】由题意先根据多边形的内角和公式先求出新多边形的边数,然后再根据截去一个角的情况进行讨论即可【详解】解:设新多边形的边数为n,则(n-2)180=2
8、340,解得:n=15,若截去一个角后边数增加1,则原多边形边数为14,若截去一个角后边数不变,则原多边形边数为15,若截去一个角后边数减少1,则原多边形边数为16,所以多边形的边数可以为14,15或16故选:A【点睛】本题考查多边形内角与外角,熟练掌握多边形的内角和公式(n-2)180(n为边数)是解题的关键2、C【分析】取线段AC的中点G,连接EG,根据等边三角形的性质以及角的计算即可得出CD=CG以及FCD=ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出FCDECG,进而即可得出DF=GE,再根据点G为AC的中点,即可得出EG的最小值,此题得解【详解】解
9、:取线段AC的中点G,连接EG,如图所示AC=BC=8,BCA=60,ABC为等边三角形,且AD为ABC的对称轴,CD=CG=AB=4,ACD=60,ECF=60,FCD=ECG,在FCD和ECG中,FCDECG(SAS),DF=GE当EGBC时,EG最小,点G为AC的中点,此时EG=DF=CD=BC=2故选:C【点睛】本题考查了等边三角形的性质以及全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF=GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键3、C【分析】从所给的选项中取出一些进行判断,看其所有内角和是否为360,
10、并以此为依据进行求解【详解】解:正三角形每个内角是60,能被360整除,所以能单独镶嵌成一个平面;正方形每个内角是90,能被360整除,所以能单独镶嵌成一个平面;正五边形每个内角是108,不能被360整除,所以不能单独镶嵌成一个平面;正六边形每个内角是120,能被360整除,所以能单独镶嵌成一个平面故只购买一种瓷砖进行平铺,有3种方式故选:C【点睛】本题主要考查了平面镶嵌解这类题,根据组成平面镶嵌的条件,逐个排除求解4、A【分析】根据正方形的四条边都相等可得BCDC,每一个角都是直角可得BDCF90,然后利用“边角边”证明CBEDCF,得BCECDF,进一步得DHCDHE90,从而知GHDE,
11、利用勾股定理求出DE的长即可得出答案【详解】解:四边形ABCD为正方形,BDCF90,BCDC,在CBE和DCF中,CBEDCF(SAS),BCECDF,BCE+DCH90,CDF+DCH90,DHCDHE90,点G为DE的中点,GHDE,ADAB6,AEABBE624,GH故选A【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,直角三角形斜边上的中线,解题的关键在于能够熟练掌握相关知识进行求解5、A【分析】中心对称图形是指绕一点旋转180后得到的图形与原图形能够完全重合的图形,由此判断即可【详解】解:根据中心对称图形的定义,可知A选项的图形为中心对称图形,故选:A【点睛】
12、本题考查中心对称图形的识别,掌握中心对称图形的基本定义是解题关键6、A【分析】如图所示,连接AC,OB交于点D,先求出C和A的坐标,然后根据矩形的性质得到D是AC的中点,从而求出D点坐标为(2,1),再由当直线经过点D时,可将矩形OABC的面积平分,进行求解即可【详解】解:如图所示,连接AC,OB交于点D,C是直线与y轴的交点,点C的坐标为(0,2),OA=4,A点坐标为(4,0),四边形OABC是矩形,D是AC的中点,D点坐标为(2,1),当直线经过点D时,可将矩形OABC的面积平分,由题意得平移后的直线解析式为,故选A【点睛】本题主要考查了一次函数与几何综合,一次函数的平移,矩形的性质,解
13、题的关键在于能够熟知过矩形中心的直线平分矩形面积7、B【分析】根据中心对称图形的概念,对各选项分析判断即可得解把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形【详解】选项、均不能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以不是中心对称图形,选项能找到这样的一个点,使图形绕某一点旋转后与原来的图形重合,所以是中心对称图形,故选:【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合8、B【分析】把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,
14、这个点叫做对称中心【详解】解:选项B能找到这样的一个点,使图形绕某一点旋转180后与原来的图形重合,所以是中心对称图形;选项A、C、D不能找到这样的一个点,使图形绕某一点旋转180后与原来的图形重合,所以不是中心对称图形;故选:B【点睛】此题主要考查了中心对称图形定义,关键是找出对称中心9、D【分析】根据矩形的性质,可得ABD40,DBC50,根据折叠可得DBCDBC50,最后根据2DB CDBA进行计算即可【详解】解:四边形ABCD是矩形,ABC90,CDAB,ABD=140,DBCABC-ABD=50,由折叠可得DB CDBC50,2DB CDBA504010,故选D【点睛】本题考查了长方
15、形性质,平行线性质,折叠性质,角的有关计算的应用,关键是求出DBC和DBA的度数10、C【分析】依题意得出AE=AB=AD,ADE=50,又因为B=80故可推出ADC=80,CDE=ADC-ADE,从而求解【详解】ADBC,AEB=DAE=B=80,AE=AB=AD,在三角形AED中,AE=AD,DAE=80,ADE=50,又B=80,ADC=80,CDE=ADC-ADE=30故选:C【点睛】考查菱形的边的性质,同时综合利用三角形的内角和及等腰三角形的性质,解题关键是利用等腰三角形的性质求得ADE的度数二、填空题1、12【分析】设这个多边形的边数为n,根据多边形的内角和定理得到,然后解方程即可
16、【详解】解:设这个多边形的边数是n,依题意得,故答案为:12【点睛】考查了多边形的内角和定理,关键是根据n边形的内角和为解答2、6【分析】根据多边形内角和公式及多边形外角和可直接进行求解【详解】解:由题意得:,解得:,该多边形的边数为6;故答案为6【点睛】本题主要考查多边形的内角和及外角和,熟练掌握多边形内角和及外角和是解题的关键3、 【分析】根据菱形的性质,即可求解【详解】解:(1)菱形的对角线互相垂直且平分;(2)菱形的对角线把菱形分成四个全等的直角三角形故答案为:(1);(2)【点睛】本题主要考查了菱形的性质,熟练掌握菱形的对角线互相垂直且平分是解题的关键4、(2,-5)【分析】根据平面
17、直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y)【详解】解:根据中心对称的性质,得点P(-2,5)关于原点对称点的点的坐标是(2,-5)故答案为:(2,-5)【点睛】本题主要考查了关于原点对称的点坐标的关系,是需要识记的基本问题记忆方法是结合平面直角坐标系的图形记忆,比较简单5、9【分析】设正多边形的外角为x度,则可用代数式表示出内角,再由内角与外角互补的关系得到方程,解方程即可求得每一个外角,再根据多边形的外角和为360度即可求得正多边形的边数【详解】设正多边形的外角为x度,则内角为(5x60)度由题意得:解得:则正多边形的边数为:36040=9即这个正多边形的边数为9故答
18、案为:9【点睛】本题考查了正多边形的内角与外角,关键是运用方程求得正多边形的外角三、解答题1、见解析【分析】由已知条件可得DF=AB及DFAB,从而可得四边形ABFD为平行四边形,则问题解决【详解】是的中位线DEAB,AD=DCDFABEF=DEDF=AB四边形ABFD为平行四边形AD=BFBF=DC【点睛】本题主要考查了平行四边形的判定与性质、三角形中位线的性质定理,掌握它们是解答本题的关键当然本题也可以用三角形全等的知识来解决2、(1)见解析;(2)39【分析】(1)首先根据CFDE,DFEF得出CF为DE的中垂线,然后根据垂直平分线的性质得到CDCE,然后根据直角三角形斜边上的中线等于斜
19、边的一半得到CDAD,即可证明ADCE;(2)由(1)得CDCE=AB=5,由勾股定理求出BC,然后结合三角形的面积公式进行计算【详解】(1)证明:DFEF 点F为DE的中点 又CFDE CF为DE的中垂线CDCE又在RtABC中,ACB90,CD是斜边AB上的中线CD=ADADCE(2)解:由(1)得CDCE=5 AB=10 在RtABC中,BC=8EB=EC+BC=13 【点睛】此题考查了垂直平分线的判定和性质,直角三角形性质,三角形面积公式等知识,解题的关键是熟练掌握垂直平分线的判定和性质,直角三角形性质,三角形面积公式3、(1);(2)每一个外角的度数是【分析】(1)根据平行线的性质可
20、得B的度数,再根据等腰三角形的性质可得A的度数;(2)根据n边形的内角和等于外角和的3倍多180,可得方程180(n-2)=3603+180,再解方程即可【详解】解:(1),;设这个多边形的边数为,根据题意得:,解得,即它的边数是,所以每一个外角的度数是【点睛】本题考查了平行线的性质、等腰三角形的性质以及多边形内角和与外角和解题的关键是掌握多边形内角和公式,明确外角和是3604、(1);(2)证明;证明见解析;(3),【分析】(1)根据图形可得出三对全等三角形;(2)根据正方形的性质及全等三角形的判定定理对(1)中全等三角形依次证明即可;(3)连接BG,由材料二可得,被分成4个面积相等的等腰直
21、角三角形,即可得出;连接HJ,KI,过点H作HMAD于点M,过点I作INCD于点N,则被分为9个面积相等的等腰直角三角形,即可得出【详解】解:(1);(2)证明;由题意得,在正方形ABCD中,在和中;证明:;由题意得,在正方形HIJK中,AC为正方形ABCD的对角线,在RtAHK和RtCIJ中,RtAHKRtCIJ;证明:由题意得,在正方形EBFG中,AC为正方形ABCD的对角线,在RtAEG和RtCFG中,RtAEGRtCFG;(3)如图,连接BG,由材料二可得,被分成4个面积相等的等腰直角三角形,SABC=SADC=1266=18连接HJ,KI,过点H作HMAD于点M,过点I作INCD于点
22、N,则被分为9个面积相等的等腰直角三角形,【点睛】题目主要考查正方形的性质、全等三角形的判定定理及对题意的理解能力,熟练掌握全等三角形的判定定理及理解题意是解题关键5、A+BC+D; 25;P;+180,P; ;P;2PBD180【分析】探索一:根据三角形的内角和定理,结合对顶角的性质可求解;探索二:根据角平分线的定义可得BAPDAP,BCPDCP,结合(1)的结论可得2PB+D,再代入计算可求解;探索三:运用探索一和探索二的结论即可求得答案;应用一:如图4,延长BM、CN,交于点A,利用三角形内角和定理可得A+180,再运用角平分线定义及三角形外角性质即可求得答案;应用二:如图5,延长MB、
23、NC,交于点A,设T是CB的延长线上一点,R是BC延长线上一点,利用应用一的结论即可求得答案;拓展一:运用探索一的结论可得:P+PABB+PDB,P+CDPC+CAP,B+CDBC+CAB,再结合已知条件即可求得答案;拓展二:运用探索一的结论及角平分线定义即可求得答案【详解】解:探索一:如图1,AOB+A+BCOD+C+D180,AOBCOD,A+BC+D,故答案为A+BC+D;探索二:如图2,AP、CP分别平分BAD、BCD,12,34,由(1)可得:1+B3+P,2+P4+D,BPPD,即2PB+D,B36,D14,P25,故答案为25;探索三:由D+21B+23,由2B+232P+21,
24、+得:D+2B+21+23B+23+2P+21D+2B2P+BP故答案为:P应用一:如图4,延长BM、CN,交于点A,M,N,+180,AMN180,ANM180,A180(AMN+ANM)180(180+180)+180;BP、CP分别平分ABC、ACB,PBCABC,PCDACD,PCDP+PBC,PPCDPBC(ACDABC)A,故答案为:+180,;应用二:如图5,延长MB、NC,交于点A,设T是CB的延长线上一点,R是BC延长线上一点,M,N,+180,A180,BP平分MBC,CP平分NCR,BP平分ABT,CP平分ACB,由应用一得:PA,故答案为:;拓展一:如图6,由探索一可得
25、:P+PABB+PDB,P+CDPC+CAP,B+CDBC+CAB,Cx,By,CAPCAB,CDPCDB,CDBCABCBxy,PABCAB,PDBCDB,P+CABB+CDB,P+CDBC+CAB,2PC+B+(CDBCAB)x+y+(xy),P,故答案为:P;拓展二:如图7,AP平分BAD,CP平分BCD的邻补角BCE,PADBAD,PCD90+BCD,由探索一得:B+BADD+BCD,P+PADD+PCD,2,得:2P+BAD2D+180+BCD,得:2PBD+180,2PBD180,故答案为:2PBD180【点睛】本题是探究性题目,考查了三角形的相关计算、三角形内角和定理、角平分线性质、三角形外角的性质等,此类题目遵循题目顺序,结合相关性质和定理,逐步证明求解即可