《2022年强化训练北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组定向练习试题(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年强化训练北师大版八年级数学下册第二章一元一次不等式和一元一次不等式组定向练习试题(无超纲).docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、第二章一元一次不等式和一元一次不等式组定向练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如果xy,则下列不等式正确的是()Ax1y1B5x5yCD2x2y2、适合|2a+7|+|2a1|8的整数a的
2、值的个数有()A2B4C8D163、若xy成立,则下列不等式成立的是()Ax+24yC3x3yDx280D5x2(20x)80第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、不等式的非负整数解有_2、甲乙两人参加竞聘,笔试和面试成绩的权重分别是是a,b,甲两项得分分别是90和80,乙两项得分分别是84,89,按规则最终成绩高的录取,若甲被录取,则a,b之间的关系是_3、已知点P(x,y+1)在第二象限,则点Q(x+2,2y+3)在第 _象限4、已知不等式(a1)xa1的解集是x1,则a的取值范围为_5、说出下列不等式的变形是根据不等式的哪一条性质:(1)由x3,得x6;
3、_;(2)由3x5,得x2;_;(3)由2x6,得x3;_;(4)由3x2x4,得x4._三、解答题(5小题,每小题10分,共计50分)1、某商店销售10台A型和20台B型电脑的利润为6400元,销售20台A型和10台B型电脑的利润为5600元(1)求每台A型电脑和B型电脑的销售利润;(2)该商店计划一次购进两种型号的电脑共100台,其中B型电脑的进货量不超过A型电脑的2倍设购进A型电脑x台,这100台电脑的销售总利润为y元求y关于x的函数关系式;该商店购进A型、B型电脑各多少台,才能使销售总利润最大,最大销售总利润是多少元?2、已知函数y2,当x2时,y则:(1)当x2时,y ;根据x2时y
4、的表达式,补全表格、如图的函数图象x21012y0.51.5(2)观察(1)的图象,该函数有最 值(填“大”或“小”),是 ,你发现该函数还具有的性质是 (写出一条即可);(3)在如图的平面直角坐标系中,画出yx的图象,并指出2|x1|x时,x的取值范围3、解不等式组:(1)(2)4、疫情期间,乐清市某医药公司计划购进N95型和一次性成人口罩两种款式若购进N95型10箱和一次性成人口罩20箱,需要32500元;若购进N95型30箱和一次性成人口罩40箱,需要87500元 (1)N95型和一次性成人口罩每箱进价分别为多少元? (2)由于疫情严峻急需口罩,老板决定再次购进N95型和一次性成人口罩共
5、80箱,口罩工厂对两种产品进行了价格调整,N95型的每箱进价比第一次购进时提高了10%,一次性成人口罩的每箱进价按第一次进价的八折;如果药店此次用于购进N95型和一次性成人口罩两种型号的总费用不超过115000元,则最多可购进N95型多少箱? (3)若销售一箱N95型,可获利500元;销售一箱一次性成人口罩,可获利100元,在(2)的条件下,如何进货可使再次购进的口罩获得最大的利润?最大的利润是多少?5、已知一次函数y2x+4,完成下列问题:(1)图象与x轴交点A( )、与y轴交点B( );(2)画出函数图象,并根据图象回答:当x 时,y2;当x0时,y的取值范围 当1x3时,y的取值范围 -
6、参考答案-一、单选题1、C【分析】根据不等式的性质解答不等式的两边同时加上(或减去)同一个数或同一个含有字母的式子,不等号的方向不变;不等式的两边同时乘以(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘以(或除以)同一个负数,不等号的方向改变【详解】解:Axy,x1y1,故本选项不符合题意;Bxy,5x5y,故本选项不符合题意;Cxy,故本选项符合题意; Dxy,2x2y,故本选项不符合题意;故选:C【点睛】此题考查了不等式的性质,熟记不等式的性质并正确应用是解题的关键2、B【分析】先分别讨论绝对值符号里面代数式值,然后去绝对值,解一元一次方程即可求出a的值【详解】解:(1)当2a+
7、70,2a10时,可得,2a+7+2a18,解得,a解不等式2a+70,2a10得,a,a,所以a,而a又是整数,故a不是方程的一个解;(2)当2a+70,2a10时,可得,2a72a+18,解得,a解不等式2a+70,2a10得,a,a,所以a,而a又是整数,故a不是方程的一个解;(3)当2a+70,2a10时,可得,2a+72a+18,解得,a可为任何数解不等式2a+70,2a10得,a,a,所以a,而a又是整数,故a的值有:3,2,1,0(4)当2a+70,2a10时,可得,2a7+2a18,可见此时方程不成立,a无解综合以上4点可知a的值有四个:3,2,1,0故选:B【点睛】本题主要考
8、查去绝对值及解一元一次方程的方法:解含绝对值符号的一元一次方程要根据绝对值的性质和绝对值符号内代数式的值分情况讨论,即去掉绝对值符号得到一般形式的一元一次方程,再求解3、D【分析】不等式的性质1:在不等式的两边都加上或减去同一个数,不等号的方向不变,性质2:在不等式的两边都乘以或除以同一个正数,不等号的方向不变,性质3:在不等式的两边都乘以或除以同一个负数,不等号的方向改变;根据不等式的基本性质逐一判断即可.【详解】解:A、不等式xy,不等式xy的两边都加上2,不等号的方向不变,即x+2y+2,原变形错误,故此选项不符合题意;B、不等式xy的两边都乘4,不等号的方向不变,即4x4y,原变形错误
9、,故此选项不符合题意;C、不等式x3y,原变形错误,故此选项不符合题意;D、不等式xy的两边都减去2,不等号的方向不变,即x2y2,原变形正确,故此选项符合题意;故选:D【点睛】本题考查的是不等式的基本性质,掌握“不等式的基本性质”是解本题的关键.4、D【分析】根据正比例函数和一次函数的性质判断即可【详解】解:直线经过第一、三象限,k0,故正确;与y轴交点在负半轴,b0,故错误;正比例函数经过原点,且y随x的增大而增大,当x0时,y10;故正确;当x-2时,正比例函数在一次函数图象的下方,即kx,故错误故选:D【点睛】本题考查了一次函数与一元一次不等式,关键是根据正比例函数和一次函数的性质判断
10、5、D【分析】根据“同大取大,同小取小,大小小大取中间,大大小小无解”即可求出a的取值范围,然后根据a的取值范围解答即可【详解】解:关于x的不等式组有解,a80故选:C【点睛】此题主要考查了一元一次不等式的应用,根据实际问题中的条件列不等式时,要注意抓住题目中的一些关键性词语,找出不等关系,列出不等式式是解题关键二、填空题1、0,1,2,3【分析】先求出不等式的解集,再根据非负整数的定义得到答案【详解】解:,2x8,x1.5b【分析】先表示甲乙的加权平均分,再根据甲被录取列不等式即可【详解】甲的加权平均分为:90a+80b乙的加权平均分为:84a+89b甲被录取甲的分数乙的分数90a+80b8
11、4a+89b,解得a1.5b,故答案为:a1.5b【点睛】本题考查加权平均数,解答本题的关键是明确题意,利用加权平均数的计算方法解答3、一【分析】根据第二象限的点坐标特征,求出x和y的范围,然后确定出Q点横纵坐标的范围,即可得出结论【详解】解:点P(x,y+1)在第二象限,x0,y+10,y1,x0,2y2,x+22,2y+31,即:x+20,2y+30,点Q(x+2,2y+3)在第一象限,故答案为:一【点睛】本题考查平面直角坐标系中象限内点的特征,以及不等式的计算,理解平面直角坐标系中点坐标的特征,掌握不等式的求解方法是解题关键4、a1【分析】根据不等式的性质3,可得答案【详解】解:(a1)
12、xa1的解集是x1,不等号方向发生了改变,a10,a1故答案为:a1【点睛】本题考查了不等式的性质,不等式的两边都除以同一个负数,不等号的方向改变5、不等式的基本性质2 不等式的基本性质1 不等式的基本性质3 不等式的基本性质1 【分析】根据不等式的基本性质依次分析各小题即可得到结果【详解】(1)由x3,根据不等式的基本性质2,两边同时乘以2得x6;(2)由3x5,根据不等式的基本性质1,两边同时减去3得x2;(3)由2x6,根据不等式的基本性质3,两边同时除以2得x3;(4)由3x2x4,根据不等式的基本性质1,两边同时减去2x得x4.故答案为:不等式的基本性质2;不等式的基本性质1;不等式
13、的基本性质3,不等式的基本性质1【点睛】本题考查了不等式的性质不等式两边加上(或减去)同一个数,不等号方向不变;不等式两边乘以(或除以)同一个正数,不等号方向不变;不等式两边乘以(或除以)同一个负数,不等号方向改变三、解答题1、(1)每台A型电脑销售利润为160元,每台B型电脑的销售利润为240元;(2)y80x+24000;商店购进34台A型电脑和66台B型电脑的销售利润最大,最大利润是21280元【分析】(1)设每台A型电脑销售利润为x元,每台B型电脑的销售利润为y元,然后根据“销售10台A型和20台B型电脑的利润为6400元,销售20台A型和10台B型电脑的利润为5600元”列出方程组,
14、然后求解即可;(2)设购进A型电脑x台,这100台电脑的销售总利润为y元根据总利润等于两种电脑的利润之和列式整理即可得解;根据B型电脑的进货量不超过A型电脑的2倍列不等式求出x的取值范围,然后根据一次函数的增减性求出利润的最大值即可【详解】解:(1)设每台A型电脑销售利润为x元,每台B型电脑的销售利润为y元,根据题意得,解得每台A型电脑销售利润为160元,每台B型电脑的销售利润为240元;(2)设购进A型电脑x台,这100台电脑的销售总利润为y元,据题意得,y160x+240(100x),即y80x+24000,100x2x,x33,y80x+24000,y随x的增大而减小,x为正整数,当x3
15、4时,y取最大值,则100x66,此时y-8034+2400021280(元),即商店购进34台A型电脑和66台B型电脑的销售利润最大,最大利润是21280元【点睛】本题考查了一次函数的应用,二元一次方程组的应用,一元一次不等式的应用,读懂题目信息,准确找出等量关系列出方程组是解题的关键,利用一次函数的增减性求最值是常用的方法,需熟练掌握2、(1),表格及图像见详解;(2)大,2,关于直线对称;(3)【分析】(1)根据绝对值的性质化简得到;根据解析式补全表格,然后根据两点补全图象;(2)根据图象即可求得;(3)在同一平面直角坐标系中,画出的图象,根据图象即可求得【详解】解:(1)当时,补全表格
16、:x21012y00.511.52利用两点画出函数图象如图:(2)由图象可知:该函数有最大值,是2该函数还具有的性质是关于直线对称;故答案为:大,2,关于直线对称;(3)在同一平面直角坐标系中,画出的图象如图:由图象可知:时,的取值范围,【点睛】本题考查了一次函数的图象,一次函数与一元一次不等式的关系,一次函数的性质,数形结合是解题的关键3、(1)-1x2;(2)x3【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集【详解】解:(1)解不等式x-3(x-2)8,得:x-1,解不等式x-13-x,得:x2,则不等式组的解集为-1x2
17、;(2)解不等式2x-36-x,得:x3,解不等式1-4x5x-2,得:x,则不等式组的解集为x3【点睛】本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键4、(1)N95型和一次性成人口罩每箱进价分别为2250元、500元;(2)最多可购进N95型40箱;(3)采购N95型40个,一次性成人口罩40个可获得最利润为24000元【分析】(1)设N95型每箱进价x元,一次性成人口罩每箱进价y元,依题意得10x+20y=32500,30x+40y=87500,联立求解即可; (2)设购进N95型a箱,依题
18、意得:2250(1+10%)a+50080%(80-a)115000,求出a的范围,结合a为正整数可得a的最大值; (3)设购进的口罩获得最大的利润为w,依题意得:w500a+100(80-a),然后对其进行化简,结合一次函数的性质进行解答【详解】(1)解:设N95型每箱进价x元,一次性成人口罩每箱进价y元,依题意得: ,解得: ,答:N95型和一次性成人口罩每箱进价分别为2250元、500元(2)解:设购进N95型a箱,则一次性成人口罩为(80a)套,依题意得: 解得:a40a取正整数,0a40a的最大值为40答:最多可购进N95型40箱(3)解:设购进的口罩获得最大的利润为w, 则依题意得
19、:w500a+100(80a)400a+8000,又0a40,w随a的增大而增大,当a40时,W40040+800024000元即采购N95型40个,一次性成人口罩40个可获得最利润为24000元答:最大利润为24000元【点睛】本题考查了二元一次方程组的应用、一元一次不等式组的应用以及一次函数的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式组;(3)根据各数量之间的关系,找出w关于a的函数关系式5、(1)(2,0);(0,4)(2)1;y4;2y2【分析】(1)分别代入y=0及x=0,求出与之对应的x,y的值,进而可得出点A
20、,B的坐标;(2)画出函数图象,利用一次函数图象上点的坐标特征及函数图象,即可得出结论【详解】解:(1)当y0时,2x+40,解得:x2,点A的坐标为(2,0);当x0时,y20+44,点B的坐标为(0,4).故答案为:(2,0);(0,4)(2)画出函数图象,如图所示当y2时,2x+42,解得:x1;当x0时,y4,且y随x的增大而减小,当x0时,y的取值范围为y4;当x1时,y21+42,当x3时,y23+42,当1x3时,y的取值范围为2y2故答案为:1;y4;2y2【点睛】本题考查了一次函数图象上点的坐标特征、一次函数的性质以及一次函数的图象,解题的关键是:(1)利用一次函数图象上点的坐标特征,求出点A,B的坐标;(2)利用一次函数图象上点的坐标特征及函数图象,找出结论