2022年沪科版九年级数学下册第26章概率初步章节测评练习题(含详解).docx

上传人:知****量 文档编号:28182911 上传时间:2022-07-26 格式:DOCX 页数:20 大小:341.29KB
返回 下载 相关 举报
2022年沪科版九年级数学下册第26章概率初步章节测评练习题(含详解).docx_第1页
第1页 / 共20页
2022年沪科版九年级数学下册第26章概率初步章节测评练习题(含详解).docx_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《2022年沪科版九年级数学下册第26章概率初步章节测评练习题(含详解).docx》由会员分享,可在线阅读,更多相关《2022年沪科版九年级数学下册第26章概率初步章节测评练习题(含详解).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、沪科版九年级数学下册第26章概率初步章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、以下事件为随机事件的是( )A通常加热到100时,水沸腾B篮球队员在罚球线上投篮一次,未投中C任意画一个三角形,

2、其内角和是360D半径为2的圆的周长是2、在一个不透明的盒子中装有红球、白球、黑球共40个,这些球除颜色外无其他差别,在看不见球的条件下,随机从盒子中摸出一个球记录颜色后放回经过多次试验,发现摸到红球的频率稳定在30%左右,则盒子中红球的个数约为( )A12B15C18D233、任意掷一枚骰子,下列事件中:面朝上的点数小于1;面朝上的点数大于1;面朝上的点数大于0,是必然事件,不可能事件,随机事件的顺序是( )ABCD4、下列事件是必然事件的是()A抛一枚硬币正面朝上B若a为实数,则a20C某运动员射击一次击中靶心D明天一定是晴天5、某学校九年级为庆祝建党一百周年举办“歌唱祖国”合唱比赛,用抽

3、签的方式确定出场顺序现有8根形状、大小完全相同的纸签,上面分别标有序号1、2、3、4、5、6、7、8下列事件中是必然事件的是( )A一班抽到的序号小于6B一班抽到的序号为9C一班抽到的序号大于0D一班抽到的序号为76、 “2022年春节期间,中山市会下雨”这一事件为( )A必然事件B不可能事件C确定事件D随机事件7、一个不透明的袋子里装有黄球18个和红球若干,小明通过多次摸球试验后发现摸到红球的频率稳定在0.4左右,则袋子里有红球( )个A12B15C18D548、成语“守株待兔”描述的这个事件是()A必然事件B确定事件C不可能事件D随机事件9、在一个不透明的袋子中装有3个除颜色外完全相同的小

4、球,其中黑球1个,红球2个,从中随机摸出一个小球,则摸出的小球是黑色的概率是()ABCD10、为了深化落实“双减”工作,促进中小学生健康成长,教育部门加大了实地督查的力度,对我校学生的作业、睡眠、手机、读物、体质“五项管理”要求的落实情况进行抽样调查,计划从“五项管理”中随机抽取两项进行问卷调查,则抽到“作业”和“手机”的概率为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个不透明的袋子装有除颜色外其余均相同的2个红球和m个黄球,随机从袋中摸出个球记录下颜色,再放回袋中摇匀大量重复试验后,发现摸出红球的频率稳定在0.2附近,则m的值为_2、社团课上,同

5、学们进行了“摸球游戏”:在一个不透明的盒子里,装有20个除颜色不同外其余均相同的黑、白两种球,将盒子里面的球搅匀后,从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程整理数据后,制作了“摸出黑球的频率”与“摸球的总次数”的关系图象,如图所示,经分析可以推断“摸出黑球”的概率约为_3、在不透明的袋中装有仅颜色不同的一个红球和一个蓝球,从此袋中随机摸出一个小球,然后放回,再随机摸出一个小球,则两次摸出的球颜色不同的概率是_4、在一个不透明袋子中有3个红球和2个黑球,这些球除颜色外无其他差别从袋子中随机取出1个球,则取出红球的概率是_5、如图,一个可以自由转动且质地均匀的转盘,被分成6个

6、大小相同的扇形,指针是固定的,当转盘停止时,指针指向任意一个扇形的可能性相同(指针指向两个扇形的交线时,当作指向右边的扇形)把部分扇形涂上了灰色,则指针指向灰色区域的概率为_三、解答题(5小题,每小题10分,共计50分)1、如图,转盘黑色扇形和白色扇形的圆心角分别为120和240(1)让转盘自由转动一次,指针落在白色区域的概率是多少?(2)让转盘自由转动两次,请用树状图或者列表法求出两次指针都落在白色区域的概率(注:当指针恰好指在分界线上时,无效重转)2、已知关于x的一元二次方程x2+bx+c0(1)c2b1时,求证:方程一定有两个实数根(2)有甲、乙两个不透明的布袋,甲袋中装有3个除数字外完

7、全相同的小球,分别标有数字1,2,3,乙袋中装有4个除数字外完全相同的小球,分别标有数字1,2,3,4,从甲袋中随机抽取一个小球,记录标有的数字为b,从乙袋中随机抽取一个小球,记录标有的数字为c,利用列表法或者树状图,求b、c的值使方程x2+bx+c0有两个相等的实数根的概率3、为提高学生的安全意识,学校就学生对校园安全知识的了解程度,对部分学生进行了问卷调查,将收集信息进行统计分成A、B、C、D四个等级,其中A:非常了解;B:基本了解;C:了解很少;D:不了解并将结果绘制成两幅不完整的统计图请你根据统计信息解答下列问题:(1)接受问卷调查的学生共有 人;(2)求扇形统计图中“D”等级的扇形的

8、圆心角的度数,并补全条形统计图;(3)全校约有学生1500人,估计“A”等级的学生约有多少人?(4)九年一班从“A”等级的甲、乙、丙、丁4名同学中随机抽取2人参加学校竞赛,请用列表或树状图的方法求出恰好抽到甲、丁同学的概率4、苗木种植不仅绿了家园,助力脱贫攻坚,也成为乡村增收致富的“绿色银行”小王承包了一片荒山,他想把这片荒山改造成一个苹果园,现在有一种苹果树苗,它的成活率如下表所示:移植棵数()成活数()成活率()移植棵数()成活数()成活率()50470.940150013350.8902702350.870350032030.9154003690.923700063357506620.8

9、8314000126280.902根据以上信息,回答下列问题:(1)当移植的棵数是7000时,表格记录成活数是_,那么成活率是_(2)随着移植棵数的增加,树苗成活的频率总在0.900附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是_(3)若小王移植10000棵这种树苗,则可能成活_;(4)若小王移植20000棵这种树苗,则一定成活18000棵此结论正确吗?说明理由5、 “双减”意见下,各级教育行政部门都对课后作业作了更明确的要求为了解某学校七年级学生课后作业时长情况,某部门针对某校七年级学生进行了问卷调查,调查结果分四类显示:A表示“40分钟以内完成”,B表示“4070分钟以内完成”,C

10、表示“7090分钟以内完成”,D表示“90分钟以上完成”根据调查结果,绘制成两种不完整的统计图请结合统计图,回答下列问题(1)这次调查的总人数是 人;(2)扇形统计图中,B类扇形的圆心角是 ;(3)在D类学生中,有2名男生和2名女生,再需从这4名学生中抽取2名学生作进一步访谈调查,请用树状图或列表的方法,求所抽2名学生恰好是1名男生和1名女生的概率-参考答案-一、单选题1、B【分析】根据事件发生的可能性大小判断相应事件的类型即可【详解】解:A通常加热到100时,水沸腾是必然事件;B篮球队员在罚球线上投篮一次,未投中是随机事件;C任意画一个三角形,其内角和是360是不可能事件;D半径为2的圆的周

11、长是是必然事件;故选:B【点睛】考查了随机事件,解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件2、A【分析】由题意可设盒子中红球的个数x,则盒子中球的总个数x,摸到红球的频率稳定在30%左右,根据频率与概率的关系可得出摸到红球的概率为30%,再根据概率的计算公式计算即可【详解】解:设盒子中红球的个数x,根据题意,得: 解得x=12,所以盒子中红球的个数是12,故选:A【点睛】本题主要考查了利用频率估计概率以及概率求法的运用,利用概率的求法估计

12、总体个数,利用如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=;频率与概率的关系生:一般地,在大量的重复试验中,随着试验次数的增加,事件A发生的频率会稳定于某个常数p,我们称事件A发生的概率为p3、D【分析】必然事件是一定会发生的事件;不可能事件是一定不会发生的事件;随机事件是某次试验中可能发生也可能不发生的事件;面朝上可能结果为点数;根据要求判断,进而得出结论【详解】解:中面朝上的点数小于是一定不会发生的,故为不可能事件;中面朝上的点数大于是有可能发生有可能不发生的,故为随机事件;中面朝上的点数大于是一定会发生的,故为必然事件依据要求进行排

13、序为故选D【点睛】本题考察了事件解题的关键在于区分各种事件的概念4、B【分析】根据必然事件的定义对选项逐个判断即可【详解】解:A、抛一枚硬币正面朝上,是随机事件,不符合题意;B、若a为实数,则a20,是必然事件,符合题意;C、某运动员射击一次击中靶心,是随机事件,不符合题意;D、明天一定是晴天,是随机事件,不符合题意,故选:B【点睛】本题主要考查了必然事件的定义,熟练掌握必然事件,在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件是解题的关键5、C【分析】必然事件,是指在一定条件下一定会发生的事件;根据必然事件的定义对几个选项进行判断,得出答

14、案【详解】解:A中一班抽到的序号小于是随机事件,故不符合要求;B中一班抽到的序号为是不可能事件,故不符合要求;C中一班抽到的序号大于是必然事件,故符合要求;D中一班抽到的序号为是随机事件,故不符合要求;故选C【点睛】本题考察了必然事件解题的关键在于区分必然、随机与不可能事件的含义6、D【分析】根据事件发生的可能性大小判断相应事件的类型即可【详解】解:“2022年年春节期间,中山市会下雨”这一事件为随机事件,故选:D【点睛】本题考查的是必然事件、不可能事件、随机事件的概念,必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可

15、能发生也可能不发生的事件7、A【分析】根据“大量重复试验中事件发生的频率逐渐稳定到的常数可以估计概率”直接写出答案即可【详解】解:设有红色球x个,根据题意得:,解得:x=12,经检验,x=12是分式方程的解且符合题意故选:【点睛】本题考查了利用频率估计概率的知识,解题的关键是能够根据摸到红球的频率求得红球的个数8、D【分析】根据必然事件、不可能事件、随机事件的概念进行解答即可【详解】解:“守株待兔”是随机事件故选D【点睛】本题考查了必然事件、不可能事件、随机事件的概念必然事件指在一定条件下,一定发生的事件不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发

16、生也可能不发生的事件9、B【分析】用黑色的小球个数除以球的总个数即可解题【详解】解:从中摸出一个小球,共有3种可能,其中摸出的小球是黑色的情况只有1种,故摸出的小球是黑色的概率是:故选:B【点睛】本题考查概率公式,解题关键是掌握随机事件发生的概率10、C【分析】根据列表法或树状图法表示出来所有可能,然后找出满足条件的情况,即可得出概率【详解】解:将作业、睡眠、手机、读物、体质“五项管理”简写为:业、睡、机、读、体,利用列表法可得:业睡机读体业(业,睡)(业,机)(业,读)(业,体)睡(睡,业)(睡,机)(睡,读)(睡,体)机(机,业)(机,睡)(机,读)(机,体)读(读,业)(读,睡)(读,机

17、)(读,体)体(体,业)(体,睡)(体,机)(体,读)根据表格可得:共有20种可能,满足“作业”和“手机”的情况有两种, 抽到“作业”和“手机”的概率为:,故选:C【点睛】题目主要考查列表法或树状图法求概率,熟练掌握列表法或树状图法是解题关键二、填空题1、8【分析】首先根据题意可取确定摸出红球的概率为0.2,然后根据概率公式建立方程求解即可【详解】解:大量重复试验后,发现摸出红球的频率稳定在0.2附近,摸出红球的概率为0.2,由题意,解得:,经检验,是原方程的解,且符合题意,故答案为:8【点睛】本题考查由频率估计概率,以及已知概率求数量;大量重复试验后,某种情况出现的频率稳定在某个值附近时,这

18、个值即为该事件发生的概率,掌握概率公式是解题关键2、【分析】根据“摸出黑球的频率”与“摸球的总次数”的关系图象,即可得出“摸出黑球”的概率【详解】解:由图可知,摸出黑球的概率约为0.2,故答案为:0.2【点睛】本题主要考查用频率估计概率,需要注意的是试验次数要足够大,次数太少时不能估计概率3、【分析】根据题意,列表分析所有可能,然后运用概率公式求解即可【详解】解:列表如下,表示红球,表示蓝球第一次第二次 总共4种情况,两次摸出的球颜色不同的2种所以两次摸出的球颜色不同的概率是故答案是:【点睛】本题考查了列表法求概率,列表法或画树状图法可以不重复不遗漏的列出所有可能的结果数,概率=所求情况数与总

19、情况数之比4、#【分析】用列举的方法一一列出可能出现的情况,进而即可求得恰好是红球的概率【详解】解:根据题意,可能出现的情况有:红球;红球;红球;黑球;黑球;则恰好是红球的概率是,故答案为:【点睛】本题主要考查了简单概率的计算,通过列举法进行计算是解决本题的关键5、【分析】指针指向灰色区域的概率就是灰色区域的面积与总面积的比值,计算面积比即可【详解】解:观察转盘灰色区域的面积与总面积的比值为故答案为:【点睛】本题考查几何概率解题的关键在于求出所求事件的面积与总面积的比值三、解答题1、(1);(2)见解析,【分析】(1)将120作为1份,可知白色扇面占2份,黑色扇面占1份,利用概率公式计算即可;

20、(2)依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出概率可得【详解】解:(1)将120作为1份,可知白色扇面占2份,黑色扇面占1份,它们发生的可能性相同,让转盘自由转动一次,共三种可能,指针落在白色区域有2种,所以,概率是;(2)设白色扇形两块和黑色扇形的一块分别为1,2,3,画树状图得: 由树状图知共有9种等可能结果,其中指针一次落在白色区域,另一次落在黑色区域的有4种结果,所以指针一次落在白色区域,另一次落在黑色区域的概率为【点睛】本题考查的是用列表法或画树状图法求概率列表法或画树状图法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件用到的知识点为:

21、概率所求情况数与总情况数之比2、(1)证明见解析;(2)【分析】(1)把c2b1代入x2+bx+c0利用一元二次方程根的判别式即可得答案;(2)根据方程x2+bx+c0有两个相等的实数根,利用判别式可得b与c的关系,画出树状图,得出所有可能情况数及符合b与c的关系的情况数,利用概率公式即可得答案【详解】(1)c2b1,x2+bx+cx2+bx+2b=0=0,方程一定有两个实数根(2)方程x2+bx+c0有两个相等的实数根,=0,画树状图如下:由树状图可知:所有可能情况数为12种,符合的情况数为2种,b、c的值使方程x2+bx+c0有两个相等的实数根的概率为=【点睛】本题考下一元二次方程的根的判

22、别式及树状图法或列表法求概率,对于一元二次方程(),根的判别式为=,当0时,方程有两个不相等的实数根,当=0时,方程有两个相等的实数根,当0时,方程没有实数根;熟练掌握根的判别式及概率公式是解题关键3、(1)40;(2)72,见解析;(3)225人;(4)【分析】(1)C组:了解很少这个小组有人,占比由可得答案;(2)利用组占比乘以即可得到组所占的圆心角的大小,再求解组人数,补全图形即可;(3)由乘以A组的占比即可得到答案;(4)先列表,可得所有的等可能的结果有种,刚好抽到甲和丁同学的情况有2种,再利用概率公式可得答案【详解】解:(1) C组:了解很少这个小组有人,占比 接受问卷调查的学生共有

23、人,故答案为: ;(2)组占比: 扇形统计图中“D”等级的扇形的圆心角的度数为:,组人数为: 所以补全条形统计图如下:(3)全校约有学生1500人,估计“A”等级的学生约有:(人);(4)列表如下:甲乙丙丁甲(甲,乙)(甲,丙)(甲,丁)乙(乙,甲)(乙,丙)(乙,丁)丙(丙,甲)(丙,乙)(丙,丁)丁(丁,甲)(丁,乙)(丁,丙)所有的等可能的结果有种,刚好抽到甲和丁同学的情况有2种,所以刚好抽到甲和丁同学的概率是:【点睛】本题考查的是从条形图与扇形图中获取信息,扇形的圆心角的计算,补画条形图,利用样本估计总体,利用列表法求解简单随机事件的概率,掌握以上基础知识是解题的关键4、(1)6335

24、;0.905;(2)0.900;(3)9000棵;(4)此结论不正确,理由见解析【分析】(1)根据表格中的数据求解即可;(2)随着移植棵数的增加,树苗成活的频率总在0.900附近摆动,显示出一定的稳定性,可以估计树苗成活的概率是0.900;(3)利用成活数=总数成活概率即可得到答案;(4)根据概率只是用来衡量在一定条件下,某事件发生的可能性大小,并不代表事件一定会发生,即可得到答案(1)解:由表格可知,当移植的棵数是7000时,表格记录成活数是6335,成活率,故答案为:6335;0.905;(2)解:大量重复试验下,频率的稳定值即为概率值,可以估计树苗成活的概率是0.900,故答案为:0.9

25、00;(3)解:由题意得:若小王移植10000棵这种树苗,则可能成活课树苗,故答案为:9000棵;(4)解:若小王移植20000棵这种树苗,则一定成活18000棵此结论不正确,理由如下:概率只是用来衡量在一定条件下,某事件发生的可能性大小,并不代表事件一定会发生,若小王移植20000棵这种树苗,不一定能成活18000棵,只能说是可能成活18000棵【点睛】本题考查利用频率估计概率,解答本题的关键是明确概率的定义,大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率5、(1)40;

26、(2)108;(3)【分析】(1)根据A类别人数及其所占百分比可得被调查的总人数;(2)用360乘以B类别人数所占比例即可;(3)画树状图,共有12种等可能的结果,其中恰好选中1名男生和1名女生的结果数为8种,再根据概率公式求解即可【详解】解:(1)参加这次调查的学生总人数为615%=40(人);故答案为:40;(2)扇形统计图中,B部分扇形所对应的圆心角是360=108,故答案为:108;(3)画树状图为:共有12种等可能的结果,其中恰好选中1名男生和1名女生的结果为8种,所抽取的2名学生恰好是1名男生和1名女生的概率为【点睛】本题考查了列表法与树状图法,正确画树状图是解题的关键,用到的知识点为:概率=所求情况数与总情况数之比也考查了统计图

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁