《2022中考特训人教版初中数学七年级下册第十章数据的收集、整理与描述专项训练试卷(含答案详解).docx》由会员分享,可在线阅读,更多相关《2022中考特训人教版初中数学七年级下册第十章数据的收集、整理与描述专项训练试卷(含答案详解).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册第十章数据的收集、整理与描述专项训练(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、在频数分布表中,所有频数之和( )A是1B等于所有数据的个数C与所有数据的个数无关D小于所有数据的个数2、下列调查适合作抽样调查的是( )A了解义乌电视台“同年哥讲新闻”栏目的收视率B了解某甲型H1N1确诊病人同机乘客的健康状况C了解某班每个学生家庭电脑的数量D“神七”载人飞船发射前对重要零部件的检查3、广元市某区为了解参加2021年中考的8900名学生的体重情况,随机抽查了其中1500名学
2、生的体重进行统计分析,下列叙述不正确的是()A8900名学生的体重情况是总体B每名学生的体重情况是个体C1500名学生的体重情况是总体的一个样本D以上调查是全面调查4、某班学生在颁奖大会上得知该班获得奖励的情况如下表:项目人数级别三好学生优秀学生干部优秀团员市级111区级322校级17512已知该班共有27人获得奖励(每位同学均可获得不同级别、不同类别多项奖励),其中只获得两项奖励的有13人,那么该班获得奖励最多的一位同学可能获得的奖励为( )A3项B4项C5项D6项5、新型冠状病毒肺炎(CoronaVriusDisease2019,COVID19),简称“新冠肺炎”,世界卫生组织命名为“20
3、19冠状病毒病”,英文单词CoronaVriusDisease中字母r出现的频数是( )A2B11.1%C18D6、小明3分钟共投篮80次,进了50个球,则小明进球的频率是( )A80B50C1.6D0.6257、为了解我市参加中考的5000名学生的身高情况,抽查了其中200名学生的身高进行统计分析下列叙述正确的是( )A5000名学生是总体B以上调查是全面调查C每名学生是总体的一个个体D从中抽取的200名学生的身高是总体的一个样本8、下列说法正确的是( )A抽样调查比全面调查更科学B全面调查比抽样调查更科学C抽样调查的样本可以随意选取D抽样调查是根据样本来估计总体的一种调查9、为了交接某校2
4、000名学生的数学成绩,抽取了其中50名学生的数学成绩进行整理分析,这个调查过程中的样本是( )A2000名学生的数学成绩B2000C被抽取的50名学生的数学成绩D5010、有40个数据,其中最大值为35,最小值为15,若取组距为4,则应该分的组数是( )A4B5C6D7二、填空题(5小题,每小题4分,共计20分)1、为了考察我市5000名七年级学生数学知识与能力测试的成绩,从中抽取100份试卷进行分析,那么样本容量是_2、开学之初,七(1)班的张老师为了安排座位,需要了解全班同学的视力情况,你认为张老师应采取_(填“全面调查”或“抽样调查”)的统计方法较为合适3、某科研小组为了考查A区域河流
5、中野生鱼的数量,从中捕捞200条,作上标记后,放回河中,经过一段充足的时间后,再从中抽捞出300条,发现有标记的鱼有15条,则估计A区域河流中野生鱼有_条4、已知一组数据有40个,把它分成六组,第一组到第四组的频数分别是5,7,6,10,第五组的频率是0.2,则第六组的频率是_5、在数据,中,范围在(包括前边的数,不包括后边的数)这一组的频数是_三、解答题(5小题,每小题10分,共计50分)1、为提升学生的艺术素养,学校计划开设四门艺术选修课:A:书法;B,绘画;C,乐器;D舞蹈为了解学生对四门功课的喜欢情况,在全校范围内随机抽取若干名学生进行问卷调查(每个被调查的学生必须选择而且只能选择其中
6、一门),将数据进行整理,并绘制成如图两幅不完整的统计图,请结合图中所给信息解答下列问题:(1)木次调查的学生共有 人,扇形统计图中的度数是 ;(2)请把条形统计图补充完整2、某校为了解本校初中学生体能情况,随机抽取部分学生进行了一次测试,并根据标准按测试成绩分成A,B,C,D四个等级,绘制出以下两幅不完整的统计图请根据图中信解答下列问题:(1)本次抽取加则试的学生为 人,扇形统计图中A等级所对的圆心角是 度;(2)请补全条形统计图;(3)若该校初中学生有1200人,请估计该校学生体能情况成绩为C等级的有多少人数?3、为落实“每天锻炼一小时,快乐学习一整天”的要求,某校举行校园阳光大课间活动,为
7、了解七年级学生每周在校体育锻炼时间,随机抽取了部分学生进行调查,并绘制了以下不完整的频数分布表和频数分布直方图时间/小时频数百分比4b1025%a15%820%1230%(1)本次调查的学生总人数为_;(2)求a、b的值,并补全频数分布直方图;(3)若将调查结果绘制成扇形统计图,求锻炼时间在“”所对应的扇形圆心角的度数4、某校开展了一次数学竞赛(竞赛成绩为百分制),并随机抽取了50名学生的竞赛成绩(本次竞赛没有满分),经过整理数据得到以下信息:信息一:50名学生竞赛成绩频数分布直方图如图所示,从左到右依次为第一组到第五组(每组数据含前端点值,不含后端点值)信息二:第三组的成绩(单位:分)为:7
8、6 76 76 73 72 75 74 71 73 74 78 76根据信息解答下列问题:(1)补全第二组频数分布直方图(直接在图中补全);(2)第三组竞赛成绩的众数是 分,抽取的50名学生竞赛成绩的中位数是 分;(3)若该校共有2000名学生参赛,请估计该校参赛学生成绩不低于80分的人数5、某商场设立了一个可以自由转动的转盘(如图所示),并规定:顾客购买10元以上的商品就能获得一次转动转盘的机会,当转盘停止时,指针落在哪个区域就可以获得相应的奖品下表所示的是活动进行中的一组数据:转动转盘的次数1001502005008001000落在“牙膏”区域的次数68111136345564701落在“
9、牙膏”区域的频率0.680.740.680.690.7050.701(1)请估计当m很大时,落在“牙膏”区域的频率将会接近多少?(精确到0.1)(2)假如你去转动转盘一次,你获得洗衣液的概率大约是多少?(精确到0.1)(3)在该转盘中,标有“牙膏”区域的扇形圆心角大约是多少度?(精确到1)-参考答案-一、单选题1、B【解析】【分析】根据频数与频率的关系,审清题意频数之和等于所有数据的个数,频率之和等于1,即可得解【详解】A. 频数分布表中,所有频率之和是1,故选项A不正确 ;B. 频数之和等于所有数据的个数,故选项B正确;C. 在频数分布表中,所有频数之和与所有数据的个数有关 ,故选项C不正确
10、;D. 在频数分布表中,所有频数之和等于所有数据的个数,故选项D不正确故选择B【点睛】本题考查频数分布表中的频数与频率问题,频数之和等于总数,频率之和等于1,注意区分是解题关键2、A【解析】【分析】根据普查得到的调查结果比较准确,但所费人力、物力和时间较多,而抽样调查得到的调查结果比较近似判断即可【详解】解:A、了解义乌电视台“同年哥讲新闻”栏目的收视率,应采用抽样调查的方式,故本选项符合题意;B、了解某甲型H1N1确诊病人同机乘客的健康状况,应采用全面调查,故本选项不符合题意;C、了解某班每个学生家庭电脑的数量,应采用全面调查,故本选项不符合题意;D、“神七”载人飞船发射前对重要零部件的检查
11、,应采用全面调查,故本选项不符合题意;故选:A【点睛】本题考查的是抽样调查和全面调查的区别,熟练掌握选择普查还是抽样调查要根据所要考查的对象的特征灵活选用是解题的关键一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查3、D【解析】【分析】根据总体,个体、样本、普查、抽查的意义进行判断即可【详解】解:“8900名学生的体重情况”是考查的总体,因此选项A正确,不符合题意;“每一名学生的体重情况”是总体的一个个体,因此选项B正确,不符合题意;“1500名学生的体重情况”是总体的一个样本,因此选项C正确,不符合题意;以
12、上调查是抽样调查,不是普查,因此选项D错误,符合题意;故选D【点睛】本题考查了总体、个体、样本、以及普查和抽样调查,解题的关键是理解总体、个体、样本的意义4、C【解析】【分析】根据题意,要使“该班获得奖励最多的一位同学”获奖最多,则让剩下的人中的一人获奖最多,其余获奖最少,只获一项奖励,用总奖励减去各部分的奖励即可得获奖最多的人的项目个数【详解】解:根据题意,要使“该班获得奖励最多的一位同学”获奖最多,则让剩下的人中的一人获奖最多,其余人获奖最少,只获一项奖励,则获奖最多的人获奖项目为:项故选:C【点睛】题目主要考查数据的整理、处理,理解题意,理清在什么情况下获奖最多是解题关键5、A【解析】【
13、分析】根据CoronaVriusDisease中共有18个字母,其中r出现2次可得答案【详解】解:CoronaVriusDisease中共有18个字母,其中r出现2次,频数是2,故选A【点睛】本题主要考查了频数的定义:熟知定义是解题的关键:频数是指变量值中代表某种特征的数出现的次数6、D【解析】【分析】根据频率等于频数除以数据总和,即可求解【详解】小明共投篮80次,进了50个球,小明进球的频率=5080=0.625,故选D【点睛】本题主要考查频数和频率,掌握“频率等于频数除以数据总和”是解题的关键7、D【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取
14、的一部分个体,而样本容量则是指样本中个体的数目我们在区分总体、个体、样本、样本容量,这四个概念时,首先找出考查的对象从而找出总体、个体再根据被收集数据的这一部分对象找出样本,最后再根据样本确定出样本容量【详解】解:A、5000名学生的身高是总体,故此选项错误;B、上述调查是抽样调查,不是普查,故此选项错误;C、每名学生的身高是总体的一个个体,故此选项错误;D、从中抽取的200名学生的身高是总体的一个样本,故此选项正确;故选D【点睛】本题考查统计知识的总体,样本,个体,普查与抽查等相关知识点易错易混点:学生易对总体和个体的意义理解不清而错选8、D【解析】【分析】根据全面调查和抽样调查的定义进行判
15、断即可【详解】选择全面调查还是抽样调查要根据所要考查的对象的特征灵活选用,抽样调查比全面调查哪个更科学并不是绝对的,故A、B错误;抽样调查的样本选取要有代表性和一般性,不能随意选取,故C错误;抽样调查是根据样本来估计总体的一种调查,故D正确,故选 D.【点睛】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查9、C【解析】【分析】总体是指考查的对象的全体,个体是总体中的每一个考查的对象,样本是总体中所抽取的一部分个体,
16、而样本容量则是指样本中个体的数目【详解】解:A、2000名学生的数学成绩是总体,故选项不合题意;B、2000是个体的数量,故选项不合题意;C、这50名学生的数学成绩是总体的一个样本,故选项符合题意;D、50是样本容量,故选项不合题意;故选C【点睛】本题主要考查了总体、个体、样本和样本容量的定义,解题要分清具体问题中的总体、个体与样本的区别,关键是明确考查对象的范围样本容量只是个数字,没有单位10、C【解析】【分析】根据组数=(最大值-最小值)组距计算即可【详解】解:在样本数据中最大值与最小值的差为35-15=20,又组距为4,204=5,应该分成5+1=6组故选:C【点睛】本题考查的是组数的计
17、算,解题关键是明确用最大值减最小值的差除以组距可得组数二、填空题1、100【解析】【分析】直接利用样本容量的定义分析得出答案【详解】解:从中抽取100份试卷进行分析,样本容量是:100故答案为:100【点睛】本题考查了总体、个体、样本、样本容量的知识,属于基础题,解答本题的关键是分清具体问题中的总体、个体与样本2、全面调查【解析】【分析】本题考查了抽样调查和全面调查的区别,选择普查还是抽样调查要根据所要考查的对象的特征灵活选用,一般来说,对于具有破坏性的调查、无法进行普查、普查的意义或价值不大时,应选择抽样调查,对于精确度要求高的调查,事关重大的调查往往选用普查【详解】解:因为要了解全班同学的
18、视力情况范围较小、难度不大,所以应采取全面调查的方法比较合适故答案为:全面调查【点睛】本题考查的是调查方法的选择;正确选择调查方式要根据全面调查的优缺点再结合实际情况去分析3、4000【解析】【分析】捕捞300条鱼,发现其中15条有标记,即在样本中,有标记的占到,而在总体中,有标记的共有200条,即可得出答案【详解】解:300条鱼中发现有标记的鱼有15条,有标记的占到,有200条鱼有标记,该河流中有野生鱼2004000(条);故答案为:4000【点睛】此题考查了用样本估计总体,掌握用样本估计总体的计算公式是解题的关键,本题体现了统计思想4、0.1【解析】【分析】根据频率频数总数,以及第五组的频
19、率是0.2,可以求得第五组的频数;再根据各组的频率和等于1,求得第六组的频数,从而求得其频率【详解】解:根据第五组的频率是0.2,其频数是400.28;则第六组的频数是40(10+5+7+6+8)4故第六组的频率是0.1故答案:0.1【点睛】本题是对频率频数总数这一公式的灵活运用的综合考查,注意:各小组频数之和等于数据总和,各小组频率之和等于15、6【解析】【分析】根据频数的定义:每个对象出现的次数求解即可【详解】解:由题意知:范围在2527这一组的频数是6,故答案为:6【点睛】本题考查了频数的定义,属于基础问题三、解答题1、(1);(2)画图见解析【分析】(1)由B组8人,占比20%,列式可
20、得总人数,由C组的占比乘以可得圆心角的度数;(2)先计算出C组的人数,再补全图形即可.【详解】解:(1)由B组8人,占比20%,可得总人数为:人,所以C组所在扇形的圆心角为: 故答案为: (2)C组的人数为:人,补全图形如下:【点睛】本题考查的是从扇形图与条形图中获取信息,频数与频率,画条形统计图,计算扇形某部分的圆心角,掌握以上基础知识是解题的关键.2、(1)50,;(2)画图见解析;(3)240人【分析】(1)由B类22人,占比,可得总人数,再利用A等级占比乘以可得圆心角的度数;(2)先求解C组人数,再补全图形即可;(3)利用总人数乘以C类的占比从而可得答案.【详解】解:(1)由B类22人
21、,占比,可得:总人数为:人,扇形统计图中A等级所对的圆心角是 故答案为:50,(2)C类的人数有:人,补全图形如下:(3)该校初中学生有1200人,则该校学生体能情况成绩为C等级的有:人,答:该校初中学生有1200人,则该校学生体能情况成绩为C等级的有240人.【点睛】本题考查的是从条形图与扇形图中获取信息,求解扇形某部分的圆心角的大小,利用样本估计总体,掌握条形图与扇形图的互相关联的关系是解本题的关键.3、(1)40 (2)a=6,b=,频数分布直方图见解析(3)72【分析】(1)根据体育锻炼时间“3t4”频数10,占学生总人数的百分比是25%,可得答案;(2)由(1)的结果学生总人数可求a
22、,由学生总人数和频数4,可求b;(3)根据体育锻炼时间“5t6”占学生总人数的百分比20%,即可得答案【详解】解:(1)体育锻炼时间“3t4”频数10,百分比是25%,学生总人数为1025%=40;(2)学生总人数为40,a=40-4-10-8-12=6,b= ;频数分布直方图为下图:(3)体育锻炼时间“5t6” 占学生总人数的百分比为20%,对应的扇形圆心角的度数= 【点睛】本题考查了数据的收集与整理,做题的关键是掌握由频数和对应的百分比会求总数,频数和总数会求扇形的圆心角4、(1)补全频数分布直方图见解析;(2)76,77;(3)该校2000名学生中成绩不低于80分的大约960人【分析】(
23、1)用抽取的总人数减去第一组、第三组、第四组与第五组的人数即可得第二组的人数,然后再补全频数分布直方图即可;(2)根据众数和中位数的定义求解即可;(3)样本估计总体,样本中不低于80分的占 ,进而估计1500名学生中不低于80分的人数【详解】(1)5041220410(人),补全频数分布直方图如下:(2)第三组数据中出现次数最多的是76分,共出现4次,因此众数是76分,将抽取的50名学生的成绩从小到大排列后,处在中间位置的两个数的平均数为 77(分),因此中位数是77分,故答案为:76,77;(3)2000960(人),答:该校2000名学生中成绩不低于80分的大约960人【点睛】本题考查了条
24、形统计图的意义和制作方法,从两个统计图中获取数量及数量之间的关系是解决问题的关键,样本估计总体是统计中常用的方法5、(1)0.7;(2)0.3;(3)252【分析】(1)根据频率的定义,可得当m很大时,频率将会接近其概率;(2)根据概率的求法计算即可;(3)根据扇形图中,每部分占总体的百分比等于该部分所对应的扇形圆心角的度数与360的比计算即可【详解】解:(1)当m很大时,频率将会接近0.7;(2)获得洗衣液的概率大约是1-0.70=0.3;(3)扇形的圆心角约是0.7360=252【点睛】本题考查的是条形统计图和扇形统计图的综合运用读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键用到的知识点为:频率=所求情况数与总情况数之比