2022年必考点解析沪科版九年级数学下册第24章圆课时练习试题(含详细解析).docx

上传人:知****量 文档编号:28182135 上传时间:2022-07-26 格式:DOCX 页数:26 大小:693.32KB
返回 下载 相关 举报
2022年必考点解析沪科版九年级数学下册第24章圆课时练习试题(含详细解析).docx_第1页
第1页 / 共26页
2022年必考点解析沪科版九年级数学下册第24章圆课时练习试题(含详细解析).docx_第2页
第2页 / 共26页
点击查看更多>>
资源描述

《2022年必考点解析沪科版九年级数学下册第24章圆课时练习试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《2022年必考点解析沪科版九年级数学下册第24章圆课时练习试题(含详细解析).docx(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、沪科版九年级数学下册第24章圆课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、随着2022年北京冬奥会日渐临近,我国冰雪运动发展进入快车道,取得了长足进步在此之前,北京冬奥组委曾面向全球征集202

2、2年冬奥会会徵和冬残奥会会徽设计方案,共收到设计方案4506件,以下是部分参选作品,其中既是轴对称图形又是中心对称图形的是( )ABCD2、扇形的半径扩大为原来的3倍,圆心角缩小为原来的,那么扇形的面积( )A不变B面积扩大为原来的3倍C面积扩大为原来的9倍D面积缩小为原来的3、如图,四边形内接于,如果它的一个外角,那么的度数为( )ABCD4、如图,在中,将绕点A顺时针旋转60得到,此时点B的对应点D恰好落在BC边上,则CD的长为( )A1B2C3D45、如图,AB 为O 的直径,弦 CDAB,垂足为点 E,若 O的半径为5,CD=8,则AE的长为( )A3B2C1D6、利用定理“同弧所对圆

3、心角是圆周角的两倍”,可以直接推导出的命题是( )A直径所对圆周角为B如果点在圆上,那么点到圆心的距离等于半径C直径是最长的弦D垂直于弦的直径平分这条弦7、下列图形中,既是轴对称图形又是中心对称图形的是( )ABCD8、已知O的半径为4,则点A在( )AO内BO上CO外D无法确定9、如图,A,B,C是正方形网格中的三个格点,则是( )A优弧B劣弧C半圆D无法判断10、小明将图案绕某点连续旋转若干次,每次旋转相同角度,设计出一个外轮廓为正六边形的图案(如图),则可以为( )A30B60C90D120第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、边长相等、各内角均为120

4、的六边形ABCDEF在直角坐标系内的位置如图所示,点B在原点,把六边形ABCDEF沿x轴正半轴绕顶点按顺时针方向,从点B开始逐次连续旋转,每次旋转60,经过2021次旋转之后,点B的坐标是_2、如图,一次函数的图像与x轴,y轴分别相交于点A,点B,将它绕点O逆时针旋转90后,与x轴相交于点C,我们将图像过点A,B,C的二次函数叫做与这个一次函数关联的二次函数如果一次函数的关联二次函数是(),那么这个一次函数的解析式为_3、如图,在平行四边形中,以点为圆心,为半径的圆弧交于点,连接,则图中黑色阴影部分的面积为_(结果保留)4、如图,AB为O的弦,AOB=90,AB=a,则OA=_,O点到AB的距

5、离=_5、在平面直角坐标系中,A(1,0),B(2,0),OCB=30,D为线段BC的中点,线段AD交线段OC于点E,则AOE面积的最大值为_三、解答题(5小题,每小题10分,共计50分)1、如图,ABC内接于O,D是O的直径AB的延长线上一点,DCBOAC过圆心O作BC的平行线交DC的延长线于点E(1)求证:CD是O的切线;(2)若CD4,CE6,求O的半径及tanOCB的值2、如图,在RtABC中,C90,将ABC绕着点B逆时针旋转得到FBE,点C,A的对应点分别为E,F点E落在BA上,连接AF(1)若BAC40,求BAF的度数;(2)若AC8,BC6,求AF的长3、如图,在直角坐标系中,

6、将ABC绕点A顺时针旋转90(1)画出旋转后的AB1C1,并写出B1、C1的坐标;(2)求线段AB在旋转过程中扫过的面积4、如图,在中,将绕着点A顺时针旋转得到,连接BD,连接CE并延长交BD于点F(1)求的度数;(2)若,且,求DF的长5、如图,在平面直角坐标系中,经过原点,且与轴交于点,与轴交于点,点在第二象限上,且,则_-参考答案-一、单选题1、C【分析】根据轴对称图形与中心对称图形的概念求解【详解】A是轴对称图形,不是中心对称图形,故此选项不合题意;B不是轴对称图形,是中心对称图形,故此选项不符合题意;C是轴对称图形,也是中心对称图形,故此选项合题意;D不是轴对称图形,也不是中心对称图

7、形,故此选项不合题意故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念:轴对称图形的关键是寻找对称轴,图形两部分沿对称轴折叠后可重合;中心对称图形是要寻找对称中心,旋转180度后与原图重合2、A【分析】设原来扇形的半径为r,圆心角为n,则变化后的扇形的半径为3r,圆心角为,利用扇形的面积公式即可计算得出它们的面积,从而进行比较即可得答案【详解】设原来扇形的半径为r,圆心角为n,原来扇形的面积为,扇形的半径扩大为原来的3倍,圆心角缩小为原来的,变化后的扇形的半径为3r,圆心角为,变化后的扇形的面积为,扇形的面积不变故选:A【点睛】本题考查了扇形面积,熟练掌握并灵活运用扇形面积公式是解题关键

8、3、D【分析】由平角的性质得出BCD=116,再由内接四边形对角互补得出A=64,再由圆周角定理即可求得BOD=2A=128【详解】四边形内接于又故选:D【点睛】本题考查了圆内接四边形的性质、圆周角定理,圆内接四边形的对角互补,并且任何一个外角都等于它的内对角;在同圆或等圆中,一条弧所对的圆周角等于它所对的圆心角的一半4、B【分析】由题意以及旋转的性质可得为等边三角形,则BD=2,故CD=BC-BD=2【详解】由题意以及旋转的性质知AD=AB,BAD=60ADB=ABDADB+ABD+BAD=180ADB=ABD=60故为等边三角形,即AB= AD =BD=2则CD=BC-BD=4-2=2故选

9、:B【点睛】本题考查了等边三角形的判定及性质,等边三角形的三边都相等,三个内角都相等,并且每一个内角都等于,等边三角形判定的方法有:三边相等的三角形是等边三角形(定义);三个内角都相等的三角形是等边三角形;有一个内角是60度的等腰三角形是等边三角形;两个内角为60度的三角形是等边三角形5、B【分析】连接OC,由垂径定理,得到CE=4,再由勾股定理求出OE的长度,即可求出AE的长度【详解】解:连接OC,如图AB 为O 的直径,CDAB,垂足为点 E,CD=8,;故选:B【点睛】本题考查了垂径定理,勾股定理,解题的关键是掌握所学的知识,正确的求出6、A【分析】定理“同弧所对圆心角是圆周角的两倍”是

10、圆周角定理,分析各个选项即可.【详解】A选项,直径所在的圆心角是180,直接可以由圆周角定理推导出:直径所对的圆周角为,A选项符合要求;B、C选项,根据圆的定义可以得到;D选项,是垂径定理;故选:A【点睛】本题考查圆的基本性质,熟悉圆周角定理及其推论是解题的关键.7、D【详解】解:不是轴对称图形,也不是中心对称图形,故本选项不符合题意;不是轴对称图形,是中心对称图形,故本选项不符合题意;是轴对称图形,不是中心对称图形,故本选项不符合题意;既是轴对称图形,又是中心对称图形,故本选项符合题意故选:D【点睛】本题考查了中心对称图形与轴对称图形的概念,解题的关键是掌握轴对称图形的关键是寻找对称轴,图形

11、两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合8、C【分析】根据O的半径r=4,且点A到圆心O的距离d=5知dr,据此可得答案【详解】解:O的半径r=4,且点A到圆心O的距离d=5,dr,点A在O外,故选:C【点睛】本题主要考查点与圆的位置关系,点与圆的位置关系有3种设O的半径为r,点P到圆心的距离OP=d,则有:点P在圆外dr;点P在圆上d=r;点P在圆内dr9、B【分析】根据三点确定一个圆,圆心的确定方法:任意两点中垂线的交点为圆心即可判断【详解】解;如图,分别连接AB、AC、BC,取任意两条线段的中垂线相交,交点就是圆心故选:B【点睛】本题考查已知圆上三点求圆

12、心,取任意两条线段中垂线交点确定圆心是解题关键10、B【分析】由题意依据每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360进行分析即可得出答案.【详解】解:因为每次旋转相同角度,旋转了六次,且旋转了六次刚好旋转了一周为360,所以每次旋转相同角度 .故选:B.【点睛】本题考查旋转的性质,解题的关键是能够找到旋转中心,从而确定旋转角的度数二、填空题1、【分析】根据旋转找出规律后再确定坐标【详解】正六边形ABCDEF沿x轴正半轴作无滑动的连续翻转,每次翻转60,每6次翻转为一个循环组循环,经过2021次翻转为第337循环组的第5次翻转,点B在开始时点C的位置,翻转前进的距离为:,如图

13、,过点B作BGx于G,则BAG=60,点B的坐标为故答案为:【点睛】题考查旋转的性质与正多边形,由题意找出规律是解题的关键2、【分析】由题意可知二次函数与坐标轴的三个交点坐标为(0,k),(1,0),(-k,0),将其代入抛物线()即可得m、k的二元一次方程组,即可解出,故这个一次函数的解析式为【详解】一次函数与y轴的交点为(0,k),与x轴的交点为(1,0)绕O点逆时针旋转90后,与x轴的交点为(-k,0)即(0,k),(1,0),(-k,0)过抛物线()即得将代入有整理得解得k=3或k=-1(舍)将k=3代入得故方程组的解为则一次函数的解析式为故答案为:【点睛】本题考查了一次函数和二次函数

14、的图象及其性质,解二元一次方程组,结合旋转的性质以及图象得出抛物线与坐标轴的三个交点坐标是解题的关键3、【分析】过点C作于点H,根据正弦定义解得CH的长,再由扇形面积公式、三角形的面积公式解题即可【详解】解:过点C作于点H,在平行四边形中,平行四边形的面积为:,图中黑色阴影部分的面积为:,故答案为:【点睛】本题考查平行四边形的性质、扇形面积等知识,是基础考点,掌握相关知识是解题关键4、 【分析】过O作OC垂直于弦AB,利用垂径定理得到C为AB的中点,然后由OA=OB,且AOB为直角,得到三角形OAB为等腰直角三角形,由斜边AB的长,利用勾股定理求出直角边OA的长即可;再由C为AB的中点,由AB

15、的长求出AC的长,在直角三角形OAC中,由OA及AC的长,利用勾股定理即可求出OC的长,即为O点到AB的距离【详解】解:过O作OCAB,则有C为AB的中点,OA=OB,AOB=90,AB=a,根据勾股定理得: OA2+OB2=AB,OA=,在RtAOC中,OA=,AC=AB=,根据勾股定理得:OC=故答案为:;【点睛】此题考查了垂径定理,等腰直角三角形的性质,以及勾股定理,在圆中遇到弦,常常过圆心作弦的垂线,根据近垂径定理由垂直得中点,进而由弦长的一半,圆的半径及弦心距构造直角三角形,利用勾股定理来解决问题5、【分析】过点作轴,交于点,根据中位线定理可得,设点到轴的距离为G,则AOE的边上的高

16、,作的外接圆,则当点位于图中处时,最大,根据三角形面积公式计算即可【详解】解:过点作轴,交于点,A(1,0),B(2,0),D为线段BC的中点,轴,设点到轴的距离为,则AOE的边上的高,作的外接圆,则当点位于图中处时,最大,因为,为等边三角形,,,故答案为:.【点睛】本题考查了三角形中位线定理,圆周角定理,圆周角和圆心角的关系,等边三角形的判定与性质,解直角三角形等知识点,根据题意得出点的位置是解本题的关键三、解答题1、(1)见解析(2)3,2【分析】(1)由等腰三角形的性质与已知条件得出,OCA=DCB,由圆周角定理可得ACB=90,进而得到OCD=90,即可得出结论;(2)根据平行线分线段

17、成比例定理得到,设BD=2x,则OB=OC=3x,OD=OB+BD=5x,在RtOCD中,根据勾股定理求出x=1,即O的半径为3,由平行线的性质得到OCB=EOC,在RtOCE中,可求得tanEOC=2,即tanOCB=2(1)证明:OAOC,OACOCA,DCBOAC, OCADCB, AB是O的直径,ACB90,OCA+OCB90,DCB+OCB90,即OCD90,OCDC, OC是O的半径,CD是O的切线;(2)OEBC,CD=4,CE=6,设BD=2x,则OB=OC=3x,OD=OB+BD=5x,OCDC,OCD是直角三角形,在RtOCD中,OC2+CD2=OD2,(3x)2+42=(

18、5x)2,解得,x=1,OC=3x=3,即O的半径为3,BCOE,OCB=EOC,在RtOCE中,tanEOC=,tanOCB=tanEOC=2【点睛】本题考查了圆周角定理、勾股定理、平行线的性质、等腰三角形的性质、切线的判定、三角函数、平行线分线段成比例定理等知识;熟练掌握切线的判定与平行线分线段成比例定理是解题的关键2、(1)65(2)【分析】(1)根据三角形的内角和定理得到ABC=50,根据旋转的性质得到EBF=ABC=50,AB=BF,根据三角形的内角和定理即可得到结论;(2)根据勾股定理得到AB=10,根据旋转的性质得到BE=BC=6,EF=AC=8,根据勾股定理即可得到结论【小题1

19、】解:在RtABC中,C=90,BAC=40,ABC=50,将ABC绕着点B逆时针旋转得到FBE,EBF=ABC=50,AB=BF,BAF=BFA=(180-50)=65;【小题2】C=90,AC=8,BC=6,AB=10,将ABC绕着点B逆时针旋转得到FBE,BE=BC=6,EF=AC=8,AE=AB-BE=10-6=4,AF=【点睛】本题考查了旋转的性质,勾股定理,熟练掌握旋转的性质是解题的关键3、(1)作图见解析,、;(2)【分析】(1)将绕点A顺时针旋转90得,根据点A、B、C坐标,即可确定出点、的坐标;(2)根据勾股定理求出AB的长,由扇形面积公式即可得出答案【详解】(1)将绕点A顺

20、时针旋转90得如图所示:、;(2)由图可知:,线段AB在旋转过程中扫过的面积为【点睛】本题考查作旋转图形以及扇形的面积公式,掌握旋转的性质及扇形的面积公式是解题的关键4、(1)45;(2)【分析】(1)根据旋转的性质得,通过等量代换及三角形内角和得,根据四点共圆即可求得;(2)连接EB,先证明出,根据全等三角形的性质得,在中利用勾股定理,即可求得【详解】解:(1)由旋转可知:,由三角形内角和定理得,点A,D,F,E共圆(2)连接EB,又,在中,【点睛】本题考查了旋转的性质、三角形全等判定及性质、勾股定理、三角形内角和等,解题的关键是掌握旋转的性质5、2+【分析】连接AC,CM,AB,过点C作CHOA于H,设OC=a利用勾股定理构建方程解决问题即可【详解】解:连接AC,CM,AB,过点C作CHOA于H,设OC=aAOB=90,AB是直径,A(-4,0),B(0,2),AMC=2AOC=120,在RtCOH中,在RtACH中,AC2=AH2+CH2,a=2+ 或2-(因为OCOB,所以2-舍弃),OC=2+,故答案为:2+【点睛】本题考查圆周角定理,勾股定理,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁