《2022年人教版初中数学七年级下册第九章不等式与不等式组章节练习试题(精选).docx》由会员分享,可在线阅读,更多相关《2022年人教版初中数学七年级下册第九章不等式与不等式组章节练习试题(精选).docx(17页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册第九章不等式与不等式组章节练习(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、不等式组的解集在数轴上应表示为( )ABCD2、若x+2022y+2022,则( )Ax+2y+2Bx2y2C2x2yD2xy+2022,xy,x+2y+2,x-2y-2,-2x2y故答案为:C【点睛】本题主要考查不等式的性质,熟练掌握不等式两边同时加或减去同一个整式,不等号方向不变;不等式两边同时乘(或除以)同一个大于0的整式,不等号方向不变;不等式两边同时乘(或除以)同一个小于0的整式,不等号
2、方向改变,据此判断即可3、A【分析】根据在数轴上表示不等式的解集的方法进行判断即可【详解】在数轴上表示不等式的解集如下:故选:【点睛】本题考查不等式在数轴上的表示,掌握不等式在数轴上的画法是解题的关键4、C【分析】先解不等式组,在根据不超过3个整数解,确定的取值范围,即可得出结论【详解】解:,解不等式得,解不等式得,因为不等式组有解,故解集为:,因为不等式组有不超过3个整数解,所以,把代入,解得,故选:C【点睛】本题考查了一元一次不等式组的整数解问题,解题关键是熟练解不等式组,根据有解和整数解的个数列出不等式组5、B【分析】根据已知条件得出5m15,30n20,再得出的范围,即可得出整数的个数
3、【详解】解:m在5,15内,n在30,20内,5m15,30n20,即6,的一切值中属于整数的有2,3,4,5,6,共5个;故选:B【点睛】此题考查了不等式组的应用,求出5m15和30n20是解题的关键6、A【分析】先解不等式,再利用数轴的性质解答【详解】解:解得,不等式的解集在数轴上表示为:故选:A【点睛】此题考查解不等式及在数轴上表示不等式的解集,正确解不等式及掌握数轴的性质是解题的关键7、B【分析】根据0m1,可得m越小平方越小, 1,继而结合选项即可得出答案【详解】解:0m1,可得m2m,1,可得:m2m故选:B【点睛】此题考查了不等式的性质及有理数的乘方,属于基础题,关键是掌握当0m
4、1时,m的指数越大则数值越小,难度一般8、D【分析】根据不等式组的解集的求解方法进行求解即可【详解】解:A、,解得,解集为:,故不符合题意;B、,解得,解集为:,故不符合题意;C、,解得,解集为:,故不符合题意;D、,解得,无解,符合题意;故选:D【点睛】本题考查了求不等式组的解集,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”取不等式组的解集是关键9、C【分析】根据已知条件得出,求出,再分别求出每个式子的范围,根据式子的范围即可得出答案【详解】,故A选项不符合题意;,故B选项不符合题意;可能比2021大,故C选项符合题意;,故D选项不符合题意;故选:C【点睛】本题考查数轴、倒数、
5、有理数的混合运算,求出每个式子的范围是解题的关键10、C【分析】由题意直接根据不等式的性质对各个选项进行分析判断即可【详解】解:Aab,a+cb+c,故本选项不符合题意;Bab,abbb,ab0,故本选项不符合题意;Cab,故本选项符合题意;Dab,c20,ac2bc2,故本选项不符合题意;故选:C【点睛】本题考查不等式的性质,能够正确利用不等式的性质是解题的关键,注意不等式两边同时乘除一个负数要改变不等号的方向二、填空题1、【分析】应理解:不小于,即大于或等于【详解】根据题意,得x-25x故答案是:x-25x【点睛】本题主要考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运
6、算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式本题不小于即“”2、5只和23颗或6只和26颗【分析】设猴子的只数为x只,根据题意列出不等式组,求整数解即可【详解】解:设猴子的只数为x只,根据题意列出不等式组得,解得,因为x为整数是,所以,或,花生的颗数为颗或颗故答案为:5只和23颗或6只和26颗【点睛】本题考查了一元一次不等式组的应用,解题关键是准确把握题目中的不等量关系,列出不等式组3、【分析】根据题意列出不等式即可【详解】若m与3的和是正数,则可列出不等式故答案为:【点睛】本题考查了一元一次不等式的应用,理解题意是解题的关键4、 不等式基本性质1 不等式基本性
7、质3 不等式基本性质2 不等式基本性质1; 【分析】(1)根据不等式基本性质1,不等式两边同时加上或减去一个数,不等号方向不变,求解即可;(2)根据不等式基本性质3,不等式两边同时乘以或除以一个负数,不等号方向改变,据此求解即可;(3)根据不等式基本性质2,不等式两边同时乘以或除以一个正数,不等号方向不变,求解即可;(4)根据不等式基本性质1,不等式两边同时加上或减去一个数,不等号方向不变,求解即可【详解】解:(1)如果x+25,那么,不等号两边同时减去2,不等号方向不变,根据的是不等式基本性质1;(2)如果,不等号两边同时乘以,那么;根据是不等式基本性质3;(3)如果,不等号两边同时乘以,那
8、么;根据是不等式基本性质2;(4)如果x-3-1,不等号两边同时加上3,那么;根据是不等式基本性质1;故答案为:,不等式基本性质1;,不等式基本性质3;,不等式基本性质2;,不等式基本性质1【点睛】此题考查了不等式的基本性质,解题的关键是掌握不等式的基本性质5、|a|-a0 x-(-5)2 【分析】(1)a的绝对值表示为:,根据与它本身的差是非负数,即可列出不等式;(2)x与-5的差表示为:,不大于2表示为:,综合即可列出不等式;(3)a与3的差表示为:,大于a与a的积表示为:,综合即可列出不等式;(4)x与2的平方差表示为:,负数表示为:,综合即可列出不等式【详解】解:(1)a的绝对值表示为
9、:,与它本身的差是非负数,可得:;(2)x与-5的差表示为:,不大于2表示为:,可得:;(3)a与3的差表示为:,大于a与a的积表示为:,可得:;(4)x与2的平方差表示为:,负数表示为:,可得:;故答案为:;【点睛】题目主要考查不等式的应用,依据题意,理清不等关系,列出相应不等式是解题关键三、解答题1、,作图见解析【解析】【分析】结合题意,根据一元一次不等式组的性质,求解得不等式组公共解,结合数轴的性质作图,即可得到答案【详解】解:解不等式,得 不等式,去括号,得:移项、合并同类项,得: 不等式组的解为: 数轴如下:【点睛】本题考查了数轴、一元一次不等式组的知识;解题的关键是熟练掌握一元一次
10、不等式组的性质,从而完成求解2、【解析】【分析】分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集【详解】解:解不等式3x+2x得:x-1,解不等式,得:,则不等式组的解集为:【点睛】本题考查了解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解题的关键3、(1)或;(2)或;(3)或【解析】【分析】(1)根据“点到轴的距离是1”可得,由此即可求出的值;(2)先根据(1)的结论求出点的坐标,再根据点坐标的平移变换规律即可得;(3)先根据“点位于第三象限”可求出的取值范围,
11、再根据“点的横、纵坐标都是整数”可求出的值,由此即可得出答案【详解】解:(1)点到轴的距离是1,且,即或,解得或;(2)当时,点的坐标为,则点的坐标为,即,当时,点的坐标为,则点的坐标为,即,综上,点的坐标为或;(3)点位于第三象限,解得,点的横、纵坐标都是整数,或,当时,则点的坐标为,当时,则点的坐标为,综上,点的坐标为或【点睛】本题考查了点到坐标轴的距离、象限内点的坐标特点、点的坐标平移规律和一元一次不等式组的解法等知识,属于基础题,熟练掌握平面直角坐标系的基本知识是解题关键4、(1);(2)【解析】【分析】(1)利用代入消元法求解即可;(2)先求出每个不等式的解集,然后求出不等式组的解集
12、即可【详解】解:(1)由得:,将代入得,解得将代入得: 方程组的解为:;(2)解不等式组由得:,解得,由得:,解得,不等式组的解集为:【点睛】本题主要考查了解一元一次不等式和解二元一次方程组,解题的关键在于能够熟练掌握相关计算方法5、(1)x1;(2)x7【解析】【分析】(1)按照去括号、移项、合并同类项、系数化为1的步骤解答;(2)先分别解不等式,即可得到不等式组的解集【详解】解:(1)去括号,得:2x114x12+3,移项,得:2x4x12+3+11,合并同类项,得:2x2,系数化为1,得:x1;(2)解不等式得:x,解不等式得:x7,则不等式组的解集为x7【点睛】此题考查了解一元一次不等式及不等式组,正确掌握不等式的性质计算是解题的关键