《2022年人教版初中数学七年级下册第九章不等式与不等式组定向练习试题(含解析).docx》由会员分享,可在线阅读,更多相关《2022年人教版初中数学七年级下册第九章不等式与不等式组定向练习试题(含解析).docx(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册第九章不等式与不等式组定向练习(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、如果关于x的方程ax3(x+1)1x有整数解,且关于y的不等式组有解,那么符合条件的所有整数a的个数为()A3B4C5D62、下列选项正确的是( )A不是负数,表示为B不大于3,表示为C与4的差是负数,表示为D不等于,表示为3、解集在数轴上表示为如图所示的不等式的是( )ABCD4、若ab,则下列式子正确的是()AB3a3bC3a3bDa3b35、若ab,则下列不等式不正确的是()A5a5bBC5
2、a5bDa5b56、若mn,则下列各式正确的是()A2m2nBC1m1nDm2n27、下列判断不正确的是( )A若,则B若,则C若,则D若,则8、若整数a使得关于x的方程的解为非负数,且使得关于y的一元一次不等式组至少有3个整数解则所有符合条件的整数a的和为( )A23B25C27D289、已知不等式组2x14的解都是关于x的一次不等式3x2a1的解,则a的取值范围是( )Aa5Ba5Ca8Da810、下列不等式组,无解的是( )ABCD二、填空题(5小题,每小题4分,共计20分)1、若关于的不等式的解集如图所示,则的值为_2、若m与3的和是正数,则可列出不等式:_3、已知m为十位数字是8的三
3、位数,且m-40n=24(n为自然数),则m的可能取值有_种4、在数轴上表示数的点如图所示若整数满足,则的值为_5、大学城熙街新开了一家大型进口超市,开业第一天,超市分别推出三款纸巾:洁柔体验装、洁柔超值装、妮飘进口装进行促销活动,纸巾只能按包装整袋出售,每款纸巾的单价为整数,其中妮飘进口装的促销单价是其余两款纸巾促销单价和的4倍,同时妮飘进口装的促销单价大于40元且不超过60元,当天三款纸巾的销售数量之比为第二天,超市对三款纸巾恢复原价,洁柔体验装比其促销价上涨,洁柔超值装的价格是其促销价的,而妮飘进口装的价格在其第一天的基础上增加了,第二天洁柔体验装与妮飘进口装的销量之比为,洁柔超值装的销
4、量比第一天的销量减少了超市结算发现,第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元,第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,这两天妮飘进口装的总销售额为_元三、解答题(5小题,每小题10分,共计50分)1、公司推出两种手机付费方式:甲种方式不交月租费,每通话1分钟付费0.15元;乙种方式需交18元的月租费,每通话1分钟付费0.10元,两种方式不足1分钟均按1分钟计算(1)如果一个月通话100分钟,甲种方式应付话费多少元?用乙种方式应付话费多少元?(2)请你为用户设计一个方案,使用户能合理地选择付费方式2、(1)解方程组: (2)解不等
5、式组3、某文具店准备购进甲,乙两种钢笔,若购进甲种钢笔100支,乙种钢笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元(1)求购进甲,乙两种钢笔每支各需多少元?(2)若购进了甲种钢笔80支,乙种钢笔60支,求需要多少元?(3)若该文具店准备拿出1000元全部用来购进这两种钢笔,考虑顾客需求,要求购进甲种钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍,那么该文具店共有几种购进方案4、(1)解方程组;(2)解不等式(组)5、解下列不等式(组),并把解集表示在数轴上(1);(2)-参考答案-一、单选题1、C【分析】先解关于y的不等式组可得解集为,根据关于y
6、的不等式组有解可得,由此可得,再解关于x的方程可得解为,根据关于x的方程ax3(x+1)1x有整数解可得的值为整数,由此可求得整数a的值,由此即可求得答案【详解】解:,解不等式,得:,解不等式,得:,不等式组的解集为,关于y的不等式组有解,解得:,ax3(x+1)1x,ax3x31x,ax3xx13,(a2)x4,关于x的方程ax3(x+1)1x有整数解,a为整数,a24,2,1,1,2,4,解得:a6,4,3,1,0,2,又,a4,3,1,0,2,符合条件的所有整数a的个数为5个,故选:C【点睛】此题考查了解一元一次不等式组、解一元一次方程,熟练掌握相关运算法则是解本题的关键2、C【分析】由
7、题意先根据非负数、负数及各选项的语言表述列出不等式,再与选项中所表示的进行比较即可得出答案【详解】解:不是负数,可表示成,故本选项不符合题意;不大于3,可表示成,故本选项不符合题意;与4的差是负数,可表示成,故本选项符合题意;不等于,表示为,故本选项不符合题意;故选:C【点睛】本题考查不等式的定义,解决本题的关键是理解负数是小于0的数,不大于用数学符号表示是“”3、C【分析】根据数轴可以得到不等式的解集【详解】解:根据不等式的解集在数轴上的表示,向右画表示或,空心圆圈表示,故该不等式的解集为x2;故选C【点睛】本题要考查的是在数轴上表示不等式的解集,运用数形结合的思想是本题的解题关键4、D【分
8、析】根据不等式的基本性质判断即可【详解】解:A选项,ab,故该选项不符合题意;B选项,ab,3a3b,故该选项不符合题意;C选项,ab,3a3b,故该选项不符合题意;D选项,ab,a3b3,故该选项符合题意;故选:D【点睛】本题考查了不等式的基本性质,掌握不等式的两边同时加上(或减去)同一个数或代数式,不等号的方向不变;不等式的两边同时乘(或除以)同一个正数,不等号的方向不变;不等式的两边同时乘(或除以)同一个负数,不等号的方向改变是解题的关键5、A【分析】根据不等式的基本性质逐项判断即可得【详解】解:A、不等式两边同乘以,改变不等号的方向,则,此项不正确;B、不等式两边同除以5,不改变不等号
9、的方向,则,此项正确;C、不等式两边同乘以5,不改变不等号的方向,则,此项正确;D、不等式两边同减去5,不改变不等号的方向,则,此项正确;故选:A【点睛】本题考查了不等式的基本性质,熟练掌握不等式的基本性质是解题关键6、C【分析】根据不等式的基本性质逐项判断即可【详解】解:A:mn,2m2n,不符合题意;B:mn,不符合题意;C:mn,mn,1m1n,符合题意;D: mn,当时,m2n2,不符合题意;故选:C【点睛】本题主要考查了不等式的基本性质,熟练掌握不等式的3条基本性质是解题关键7、D【分析】根据不等式得性质判断即可【详解】A. 若,则不等式两边同时加3,不等号不变,选项正确;B. 若,
10、则不等式两边同时乘-3,不等号改变,选项正确;C. 若2,则不等式两边同时除2,不等号不变,选项正确;D. 若,则不等式两边同时乘,有可能,选项错误;故选:D【点睛】本题考查不等式得性质,需要特别注意不等式两边同时乘(除)一个正数不等号不变,同时乘(除)一个负数不等号改变8、B【分析】表示出不等式组的解集,由不等式至少有四个整数解确定出a的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a的值,进而求出之和【详解】解:,解不等式得:,解不等式得:不等式组的解集为:,由不等式组至少有3个整数解, ,即整数a2,3,4,5,解得:,方程的解为非负数,得到符合条件的整数a为3,4,5
11、,6,7,之和为25故选B【点睛】此题考查了解一元一次方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键9、C【分析】先求出不等式组2x14的解集,再求出一次不等式3x2a1的解集,根据一次不等式解集的分界点在5以及其右边,列不等式求解即可【详解】解:2x14,3x5,一次不等式3x2a1,解得,满足3x5都在范围内,解得故选择C【点睛】本题考查不等式组的解集与一次不等式的解集关系,利用解集的分界点在5以及5的右边部分得出不等式是解题关键10、D【分析】根据不等式组的解集的求解方法进行求解即可【详解】解:A、,解得,解集为:,故不符合题意;B、,解得,解集为:,故不符合题意;C、,解
12、得,解集为:,故不符合题意;D、,解得,无解,符合题意;故选:D【点睛】本题考查了求不等式组的解集,熟知“同大取大,同小取小,大小小大中间找,大大小小找不到”取不等式组的解集是关键二、填空题1、3【分析】由数轴可以得到不等式的解集是x2,根据已知的不等式可以用关于m的式子表示出不等式的解集就可以得到一个关于m的方程,可以解方程求得【详解】解:解不等式x+m1得由数轴可得,x2,则解得,m3故答案为:3.【点睛】本题主要考查了解一元一次不等式,数轴上表示不等式的解集,解一元一次方程,注意数轴上的空心表示不包括2,即x2并且本题是不等式与方程相结合的综合题2、【分析】根据题意列出不等式即可【详解】
13、若m与3的和是正数,则可列出不等式故答案为:【点睛】本题考查了一元一次不等式的应用,理解题意是解题的关键3、5【分析】由题意可得,进而得到,将n代入原式,分析出m的十位数字以0,4,8,2,6这五个数依次重复下去,即可解答【详解】解:m为十位数字是8的三位数,且(n为自然数),即m=2440n,解得:, ,时,十位数为0,时,十位数为4,十位数为8,十位数为2,十位数为6,十位数为0,十位数为4,十位数为8,十位数为2,十位数为6,十位数为8,可以发现规律,m的十位数字以0,4,8,2,6这五个数依次重复下去,故在,9,14,19,24时m为十位数字是8的三位数,m的取值可能有5种,故答案为:
14、5【点睛】本题考查数字规律,不等式的性质,得出m的十位数字以0,4,8,2,6这五个数依次重复下去的规律是解题关键4、,【分析】由数轴知的取值范围,根据相反数的两数关于原点对称得出,的取值范围,即可找出整数的取值范围【详解】由数轴可知:,是整数,的值为,故答案为:,【点睛】本题考查用数轴表示数以及实数的大小比较,写出数轴上点的范围是解题的关键5、【分析】设洁柔体验装的促销价为元,销售量为包,洁柔超值装的促销价为元,销售量为包,妮飘进口装的促销价为元,销售量为包,第二天,洁柔体验装的原价为: ,销售量为包,洁柔超值装的原价为: ,销售量为包,妮飘进口装的原价为: ,销售量为 包,根据第一天的销售
15、总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767元,可得,进而可得 为整数,即可求得,根据第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,解得 ,由 都是整数,则 能被 和整除的数即能被整除,即可求得,则这两天妮飘进口装的总销售额为,即 ,代入数值求解即可【详解】解:设洁柔体验装的促销价为元,销售量为包,洁柔超值装的促销价为元,销售量为包,妮飘进口装的促销价为元,销售量为包, 则第二天,洁柔体验装的原价为:,销售量为包,洁柔超值装的原价为:,销售量为包,妮飘进口装的原价为:,销售量为包,即则第一天的销售总额比第二天洁柔体验装和妮飘进口装的销售总额之和多767
16、元即即或 为整数,解得或 洁柔体验装的原价为:是整数,则,洁柔超值装的原价为:是整数则 第一天三款纸巾的总销量与第二天三款纸巾的总销量之差大于96件且小于120件,即解得都是整数,则能被和整除的数即能被整除故答案为:14960【点睛】本题考查了二元一次方程,一元一次不等式组求整数解,理清题中数据关系是解题的关键三、解答题1、(1)甲种方式付话费15元,乙种方式付话费28元;(2)当通话时间低于360分钟时,选甲种付费方式合算;当通话时间为360分钟时,选择两种付费方式一样合算;当通话时间超过360分钟时,选择乙种付费方式合算【解析】【分析】(1)直接用0.15乘以100和用18加0.10乘以1
17、00,即可求解;(2)设一个月通话x分钟,则甲种方式应付话费 元,乙种方式应付话费 元,然后根据题意可得当18+0.10x=0.15x时,两种付费方式相同;当18+0.10x0.15x时,甲种付费方式合算;当18+0.10x0.15x时,乙种付费方式合算, 即可求解【详解】解:(1)甲:0.15100=15(元);乙:18+0.10100=28(元);答:甲种方式付话费15元,乙种方式付话费28元(2)设一个月通话x分钟,则甲种方式应付话费 元,乙种方式应付话费 元,当18+0.10x=0.15x时,两种付费方式相同,此时解得:x=360,当18+0.10x0.15x时,甲种付费方式合算,此时
18、解得:x360,当18+0.10x0.15x时,乙种付费方式合算,此时解得:x360,当通话时间低于360分钟时,选甲种付费方式合算;当通话时间为360分钟时,选择两种付费方式一样合算;当通话时间超过360分钟时,选择乙种付费方式合算【点睛】本题主要考查了列代数式以及一元一次方程和一元一次不等式的实际应用,明确题意,准确得到数量关系是解题的关键 2、(1);(2)2x3【解析】【分析】(1)方程运用加减消元法求解即可;(2)分别求出每个不等式的解集,再取它们的公共部分即可【详解】解:(1)+5得:27x=23+175,解得:x=4,将x=4代入中,得:20y=17,解得:y=3,原方程组的解为
19、 (2) ,解:解得:x2, 解得:x3, 不等式组的解集为:2x3【点睛】本题考查的是解一元一次不等式组,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键3、(1)甲种钢笔每支需5元,乙种钢笔每支需10元;(2)1000元;(3)6种【解析】【分析】(1)设购进甲种钢笔每支需元,购进乙种钢笔每支需元,根据“若购进甲种钢笔100支,乙种钢笔50支,需要1000元,若购进甲种钢笔50支,乙种钢笔30支,需要550元”,即可得出关于,的二元一次方程组,解之即可得出甲、乙两种钢笔的单价;(2)利用总价单价数量,即可求出购进甲种钢笔80支、乙种钢笔60支所需费用;(3)
20、设购进甲种钢笔支,则购进乙种钢笔支,根据“购进甲种钢笔的数量不少于乙种钢笔数量的6倍,且不超过乙种钢笔数量的8倍”,即可得出关于的一元一次不等式组,解之即可得出的取值范围,结合,均为正整数,即可得出进货方案的数量【详解】解:(1)设购进甲种钢笔每支需元,购进乙种钢笔每支需元,依题意得:,解得:答:购进甲种钢笔每支需5元,购进乙种钢笔每支需10元(2)(元答:需要1000元(3)设购进甲种钢笔支,则购进乙种钢笔支,依题意得:,解得:又,均为正整数,可以为150,152,154,156,158,160,该文具店共有6种购进方案【点睛】本题考查了二元一次方程组的应用、有理数的混合运算以及一元一次不等
21、式组的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,列式计算;(2)根据各数量之间的关系,找出关于的一元一次不等式组4、(1);(2)【解析】【分析】(1)先整理为一般式,再利用加减消元法求解即可;(2)分别求出每一个不等式的解集,根据口诀:同大取大、同小取小、大小小大中间找、大大小小找不到确定不等式组的解集【详解】解:(1)方程组整理为: -得, 解得, 把代入得, 解得, 故方程组的解为;(2)解不等式得,;解不等式得, ;故不等式组的解集为【点睛】本题考查的是解二元一次方程组和一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;
22、同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键5、(1)x1,见解析;(2)3x1,见解析【解析】【分析】(1)按照去分母,去括号,移项,合并,系数化为1的步骤解不等式,然后在数轴上表示出不等式的解集即可;(2)先求出每个不等式的解集,然后求出不等式组的解集,最后在数轴上表示不等式组的解集即可【详解】解:(1),去分母得:,去括号得: 4x+29x9+6,移项得:4x9x9+62,合并得:5x5,系数化为1得:x1,在数轴上表示为:(2)解不等式5x42+7x,得:x3,解不等式x,得:x1,则不等式组的解集为3x1,将不等式组的解集表示在数轴上如下:【点睛】本题主要考查了解一元一次不等式和解一元一次不等式组,并在数轴上表示不等式和不等式组的解集,解题的关键在于能够熟练掌握解一元一次不等式的方法