《2022年强化训练沪科版八年级下册数学期末模拟考-卷(Ⅲ)(含答案解析).docx》由会员分享,可在线阅读,更多相关《2022年强化训练沪科版八年级下册数学期末模拟考-卷(Ⅲ)(含答案解析).docx(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 沪科版八年级下册数学期末模拟考 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、满足下列条件的三角形中,不是直角三角形的是( )A三内角之比为3:4:
2、5B三边长的平方之比为1:2:3C三边长之比为7:24:25D三内角之比为1:2:32、如图已知:四边形ABCD是平行四边形,下列结论中不正确的是 ( )A当AB=BC时,它是菱形B当ACBD时,它是菱形C当AC=BD时,它是正方形D当ABC=时,它是矩形3、下列结论中,对于任何实数a、b都成立的是()ABCD4、下列各项中,方程的两个根互为相反数的是( )ABCD5、代数式在实数范围内有意义,则x的值可能为()A0B2C1D16、下列新冠疫情防控标识图案中,中心对称图形是( )ABCD7、若0是关于x的一元二次方程mx25xm2m0的一个根,则m等于()A1B0C0或1D无法确定8、下列方程
3、中,是一元二次方程的是()Ax2xx2+3BCx21D9、如图,数轴上点表示的数是-1,点表示的数是1,以点为圆心,长为半径画弧,与数轴交于原点右侧的点,则点表示的数是( )ABCD10、若a2021202220212,b1013100810121007,c,则a,b,c的大小关系是()AcbaBacbCbacDbca 线 封 密 内 号学级年名姓 线 封 密 外 第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在中,是的角平分线,是中点,连接,若,则_2、的有理化因式是 _3、化简:(a0)_4、方程x23x+20两个根的和为 _,积为 _5、若二次三项式ax2
4、+3x+4在实数范围内可以因式分解,那么a的取值范围是 _三、解答题(5小题,每小题10分,共计50分)1、问题解决:如图1,在矩形ABCD中,点E,F分别在AB,BC边上,DEAF,DEAF于点G(1)求证:四边形ABCD是正方形;(2)延长CB到点H,使得BHAE,判断AHF的形状,并说明理由类比迁移:如图2,在菱形ABCD中,点E,F分别在AB,BC边上,DE与AF相交于点G,DEAF,AED60,AE7,BF2,则DE=_(只在图2中作辅助线,并简要说明其作法,直接写出DE的长度2、为深入开展青少年毒品预防教育工作,增强学生禁毒意识,某校联合禁毒办组织开展了“2021青少年禁毒知识竞赛
5、”活动,并随即抽查了部分同学的成绩,整理并制作成图表如下:根据以上图表提供的信息,回答下列问题:(1)抽查的人数为_人,_;(2)请补全频数分布直方图;(3)若成绩在80分以上(包括80分)为“优秀”,请你估计该校2400名学生中竞赛成绩是“优秀”的有多少名?3、用适当的方法解下列方程:(1)x22x3;(2)5x22x10;(3)(x1)2(23x)24、已知在中,P是的中点,B是延长线上的一点,连接, 线 封 密 内 号学级年名姓 线 封 密 外 (1)如图1,若,求的长;(2)过点D作,交的延长线于点E,如图2所示,若,求证:;(3)如图3,若,是否存在实数m,使得当时,?若存在,请直接
6、写出m的值;若不存在,请说明理由5、解方程:(x29)+x(x3)0-参考答案-一、单选题1、A【分析】根据勾股定理逆定理及三角形内角和可直接进行排除选项【详解】解:A、由三内角之比为3:4:5可设这个三角形的三个内角分别为,根据三角形内角和可得,所以,所以这个三角形的最大角为515=75,故不是直角三角形,符合题意;B、由三边长的平方之比为1:2:3可知该三角形满足勾股定理逆定理,即1+2=3,所以是直角三角形,故不符合题意;C、由三边长之比为7:24:25可设这个三角形的三边长分别为,则有,所以是直角三角形,故不符合题意;D、由三内角之比为1:2:3可设这个三角形的三个内角分别为,根据三角
7、形内角和可得,所以,所以这个三角形的最大角为330=90,是直角三角形,故不符合题意;故选A【点睛】本题主要考查勾股定理逆定理及三角形内角和,熟练掌握勾股定理逆定理及三角形内角和是解题的关键2、C【分析】根据矩形、菱形、正方形的判定逐个判断即可【详解】解:A、四边形ABCD是平行四边形,又AB=BC,四边形ABCD是菱形,故本选项不符合题意;B、四边形ABCD是平行四边形,又ACBD,四边形ABCD是菱形,故本选项不符合题意;C、四边形ABCD是平行四边形,又AC=BD,四边形ABCD是矩形,故本选项符合题意;D、四边形ABCD是平行四边形,又ABC=90,四边形ABCD是矩形,故本选不项符合
8、题意;故选:C【点睛】本题考查了对矩形的判定、菱形的判定,正方形的判定的应用,能正确运用判定定理进行判断是解此题的关键,难度适中 线 封 密 内 号学级年名姓 线 封 密 外 3、D【分析】根据二次根式运算的公式条件逐一判断即可【详解】a0,b0时,A不成立;a0,b0时,B不成立;a0时,C不成立;,D成立;故选D【点睛】本题考查了二次根式的性质,熟练掌握公式的使用条件是解题的关键4、B【分析】设方程的两个根分别为,根据互为相反数的定义得到,即方程中一次项系数为0,分别解方程,即可得到答案【详解】解:设方程的两个根分别为,方程的两个根互为相反数,即二次项系数为1的方程中一次项系数为0,排除选
9、项C、D,方程无解;选项A不符合题意;,故选:B【点睛】此题考查了互为相反数的定义,解一元二次方程,一元二次方程根与系数的关系正确掌握解一元二次方程的方法是解题的关键5、D【分析】代数式在实数范围内有意义,可列不等式组得到不等式组的解集,再逐一分析各选项即可.【详解】解: 代数式在实数范围内有意义, 由得: 线 封 密 内 号学级年名姓 线 封 密 外 由得: 所以: 故A,B,C不符合题意,D符合题意,故选D【点睛】本题考查的是分式有意义的条件,二次根式有意义的条件,掌握“分式与二次根式的综合形式的代数式有意义的条件”是解本题的关键.6、A【分析】一个图形绕某一点旋转180,如果旋转后的图形
10、能够与原来的图形重合,那么这个图形就叫做中心对称图形根据中心对称图形的概念对各选项分析判断即可得解【详解】解:选项B、C、D不能找到这样的一个点,使图形绕某一点旋转180后与原图重合,所以不是中心对称图形;选项A能找到这样的一个点,使图形绕某一点旋转180后与原图重合,所以是中心对称图形;故选:A【点睛】本题考查了中心对称图形的概念,中心对称图形是要寻找对称中心,旋转180度后与原图重合7、A【分析】根据一元二次方程根的定义,将代入方程解关于的一元二次方程,且根据一元二次方程的定义,二次项系数不为0,即可求得的值【详解】解:0是关于x的一元二次方程mx25xm2m0的一个根,且解得故选A【点睛
11、】本题考查了一元二次方程根的定义,一元二次方程的定义,因式分解法解一元二次方程,注意是解题的关键一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程8、C【详解】解:A、方程整理为,是一元一次方程,此项不符题意;B、方程中的是分式,不是一元二次方程,此项不符题意;C、方程是一元二次方程,此项符合题意;D、方程中的不是整式,不是一元二次方程,此项不符题意;故选:C【点睛】本题考查了一元二次方程,熟练掌握一元二次方程的定义(只含有一个未知数,并且未知数的最高次数2的整式方程
12、,叫做一元二次方程)是解题关键9、A【分析】首先根据勾股定理求出AC长,再根据圆的半径相等可知AP=AC,即可得出答案【详解】解:BCAB, 线 封 密 内 号学级年名姓 线 封 密 外 ABC=90,AC=,以A为圆心,AC为半径作弧交数轴于点P,AP=AC=,点P表示的数是,故选:A【点睛】此题主要考查了勾股定理,以及数轴与实数,关键是求出AC的长10、D【分析】先分别化简各数,然后再进行比较即可【详解】解:a=20212022-20212=2021(2022-2021)=2021,b=1013100810121007=(1012+1)(1007+1)-10121007=10121007+
13、1012+1007+1-10121007=1012+1007+1=2020,c=,2020c2021,bca,故选D【点睛】本题考查了二次根式的性质与化简,实数的大小比较,准确化简各数是解题的关键二、填空题1、6【分析】根据等腰三角形三线合一可得D为BC的中点,再结合E为AC的中点,可得DE为ABC的中位线,从而可求得AB的长度【详解】解:AB=AC,AD平分BAC,D为BC的中点,E为AC的中点,AB=2DE=6故答案为:6【点睛】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查等腰三角形的性质、三角形的中位线定理等知识,能正确识图,判断DE为ABC的中位线是解题关键2、【分析】根据
14、有理化因式的定义(两个根式相乘的积不含根号)即可得答案【详解】解:因为,所以的有理化因式是,故答案为:【点睛】本题考查了有理化因式,熟练掌握有理化的方法是解题关键3、【分析】二次根式的化简公式:,再把原式化为 ,再结合公式进行化简即可.【详解】解: 故答案为:【点睛】本题考查的是二次根式的化简,掌握“”是解难题的关键.4、3 2 【分析】根据一元二次方程根与系数的关系:解题【详解】解:方程x23x+20故答案为:3,2【点睛】本题考查一元二次方程根与系数的关系韦达定理,是重要考点,难度较易,掌握相关知识是解题关键5、且【分析】由二次三项式ax2+3x+4在实数范围内可以因式分解,可得是一元二次
15、方程且在实数范围内有解,再根据一元二次方程根的判别式列不等式即可得到答案.【详解】解: 二次三项式ax2+3x+4在实数范围内可以因式分解,是一元二次方程且在实数范围内有解, 解得:且 线 封 密 内 号学级年名姓 线 封 密 外 故答案为:且【点睛】本题考查的是二次三项式在实数范围内分解因式,一元二次方程根的判别式,掌握“二次三项式在实数范围内可以因式分解的含义”是解本题的关键.三、解答题1、(1)见解析;(2)AHF是等腰三角形,理由见解析;类比迁移:9【分析】(1)根据矩形的性质得DAB=B=90,由等角的余角相等可得ADE=BAF,利用AAS可得ADEBAF(AAS),由全等三角形的性
16、质得AD=AB,即可得四边形ABCD是正方形;(2)利用AAS可得ADEBAF(AAS),由全等三角形的性质得AE=BF,由已知BH=AE可得BH=BF,根据线段垂直平分线的性质可得即可得AH=AF,AHF是等腰三角形;类比迁移:延长CB到点H,使BH=AE=6,连接AH,利用SAS可得DAEABH(SAS),由全等三角形的性质得AH=DE,AHB=DEA=60,由已知DE=AF可得AH=AF,可得AHF是等边三角形,则AH=HF=HB+BF=AE+BF=6+2=8,等量代换可得DE=AH=8【详解】解:(1)证明:四边形ABCD是矩形,DAB=B=90,DEAF,DAB=AGD=90,BAF
17、+DAF=90,ADE+DAF=90,ADE=BAF,DE=AF,ADEBAF(AAS),AD=AB,四边形ABCD是矩形,四边形ABCD是正方形;:(2)四边形ABCD是正方形,ADBC,AB=AD,ABH=BAD,BH=AE,DAEABH(SAS),AH=DE,DE=AF,AH=AF,AHF是等腰三角形延长CB到点H,使得BHAE,四边形ABCD是菱形,ADBC,AB=AD,ABH=BAD,BH=AE,DAEABH(SAS),AH=DE,AHB=DEA=60,DE=AF, 线 封 密 内 号学级年名姓 线 封 密 外 AH=AF,AHF是等边三角形,AH=HF=HB+BF=AE+BF=7+
18、2=9,DE=AH=9【点睛】本题考查了矩形的性质,正方形的判定和性质,全等三角形的判定和性质,等腰三角形的判定和性质,等边三角形判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题2、(1),;(2)见解析;(3)1440名【分析】(1)样本容量=600.2=300,90300=n;(2)计算3000.4=12,补图即可;(3)用优秀率2400,计算即可【详解】解:(1)根据题意,得:600.2=300(人),90300=n=0.3;故答案为:300, 0.3;(2)3000.4=120(人),补图如下:(3)根据题意,优秀率为0.4+0.2,(人),答:该校2400名学
19、生中竞赛成绩为“优秀”的有1440名【点睛】本题考查了频数分布直方图,样本估计整体,正确理解样本容量,频数,频率之间的关系是解题的关键3、(1)x11,x23(2)x1,x2(3)【分析】(1)先移项,再利用因式分解的方法解方程即可; 线 封 密 内 号学级年名姓 线 封 密 外 (2)先计算 再利用公式法解方程即可;(3)利用直接开平方的方法解方程即可.(1)解:x22x3移项得: 或 解得:(2)解:a5,b2,c1,2245(1)240,则即(3)解:(x1)2(23x)2或 解得:【点睛】本题考查的是一元二次方程的解法,根据方程的特点选择最合适的方法解方程是解本题的关键.4、(1)4;
20、(2)见解析;(3)存在,【分析】(1)根据,可得B=30,根据30直角三角形的性质可得,根据,可证是等边三角形,得出,根据P是的中点,得出设,则,根据勾股定理,求(已舍去)即可(2)连接,根据DEAC,可得先证CPADPE(AAS),再证是等边三角形,可证CABEBA(SAS),得出即可;(3)存在这样的m,m=作DEAC交的延长线于E,连接,根据点P为CD中点,可得CP=DP,根据DEAC,可得CAP=DEP,先证APCEPD(AAS),得出,当时,作于F,可得,可得,得出再证ACBBEA(SAS),得出即可【详解】(1)解:,B=180-CAB-ACB=180-90-60=30,是等边三
21、角形,P是的中点,在中,设,则, 线 封 密 内 号学级年名姓 线 封 密 外 ,(已舍去),(2)证明:如图1,连接,DEAC,在和中,CPADPE(AAS),又DEAC,是等边三角形,在CAB和EBA中,CABEBA(SAS),(3)存在这样的m,m=解:如图3,作DEAC交的延长线于E,连接,点P为CD中点,CP=DP,DEAC,CAP=DEP,在APC和EPD中, 线 封 密 内 号学级年名姓 线 封 密 外 ,APCEPD(AAS),AP=EP,当时,作于F,点E,F重合,在ACB和BEA中,ACBBEA(SAS),存在,使得【点睛】本题考查线段中点,等边三角形性质,勾股定理,解一元二次方程,三角形全等判定与性质,等腰直角三角形判定与性质,掌握线段中点,等边三角形性质,勾股定理,解一元二次方程,三角形全等判定与性质,等腰直角三角形判定与性质是解题关键5、【分析】利用因式分解法解一元二次方程即可得【详解】解:,即,或,或,故方程的解为【点睛】本题考查了解一元二次方程,熟练掌握方程的解法(直接开平方法、因式分解法、公式法、配方法等)是解题关键