2022年京改版七年级数学下册第八章因式分解章节训练试卷(无超纲带解析).docx

上传人:知****量 文档编号:28181123 上传时间:2022-07-26 格式:DOCX 页数:16 大小:190.71KB
返回 下载 相关 举报
2022年京改版七年级数学下册第八章因式分解章节训练试卷(无超纲带解析).docx_第1页
第1页 / 共16页
2022年京改版七年级数学下册第八章因式分解章节训练试卷(无超纲带解析).docx_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《2022年京改版七年级数学下册第八章因式分解章节训练试卷(无超纲带解析).docx》由会员分享,可在线阅读,更多相关《2022年京改版七年级数学下册第八章因式分解章节训练试卷(无超纲带解析).docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、京改版七年级数学下册第八章因式分解章节训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各组多项式中,没有公因式的是()Aaxby和by2axyB3x9xy和6y22yCx2y2和xyDa+b和a2

2、2ab+b22、n为正整数,若2an14an+1的公因式是M,则M等于()Aan1B2anC2an1D2an+13、把分解因式的结果是( )ABCD4、计算的值是()ABCD25、下列多项式中,不能用公式法因式分解的是( )ABCD6、下列各式中从左到右的变形中,是因式分解的是( )ABCD7、下列各因式分解正确的是( )ABCD8、下列各式能用平方差公式进行分解因式的是( )Ax21Bx22x1Cx2x1Dx24x49、下列从左边到右边的变形中,是因式分解的是( )ABCD10、如图,在边长为的正方形中挖掉一个边长为的小正方形,把余下的部分剪成一个矩形,通过计算两个图形(阴影部分)的面积,验

3、证了一个等式是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知a2a10,则a32a22021_2、分解因式:3ab6a2_3、分解因式:25x216y2_4、因式分解: _5、已知ab2,ab4,则a2bab2_三、解答题(5小题,每小题10分,共计50分)1、因式分解(1)(2)2、因式分解:(1) (2)3、我们知道,任意一个正整数c都可以进行这样的分解:c=ab(b是正整数,且ab),在c的所有这些分解中,如果a,b两因数之差的绝对值最小,我们就称ab是c的最优分解并规定:M(c)=,例如9可以分解成19,33,因为9-13-3,所以33是9的

4、最优分解,所以M(9)=1(1)求M(8);M(24);M(c+1)2的值;(2)如果一个两位正整数d(d=10x+y,x,y都是自然数,且1xy9),交换其个位上的数与十位上的数得到的新数加上原来的两位正整数所得的和为66,那么我们称这个数为“吉祥数”,求所有“吉祥数”中M(d)的最大值4、因式分解(1)n2(m2)n(2m)(2)(a2+4)216a25、因式分解:(1)3a26ab3b2 (2) (x1)(x2)(x3)(x4)1-参考答案-一、单选题1、D【解析】【分析】直接利用公因式的确定方法:定系数,即确定各项系数的最大公约数;定字母,即确定各项的相同字母因式(或相同多项式因式);

5、定指数,即各项相同字母因式(或相同多项式因式)的指数的最低次幂,进而得出答案【详解】解:A、by2axyy(axby),故两多项式的公因式为:axby,故此选项不合题意;B、3x9xy3x(13y)和6y22y2y(13y),故两多项式的公因式为:13y,故此选项不合题意;C、x2y2(xy)(xy)和xy,故两多项式的公因式为:xy,故此选项不合题意;D、ab和a22abb2(ab)2,故两多项式没有公因式,故此选项符合题意;故选:D【点睛】此题主要考查了公因式,掌握确定公因式的方法是解题关键2、C【解析】【分析】根据提取公因式的方法计算即可;【详解】原式,2an14an+1的公因式是,即;

6、故选C【点睛】本题主要考查了利用提取公因式法因式分解,准确分析计算是解题的关键3、B【解析】【分析】先用平方差公式分解因式,在提取公因式即可得出结果【详解】解:a2+2a-b2-2b,=(a2-b2)+(2a-2b),=(a+b)(a-b)+2(a-b),=(a-b)(a+b+2),故选:B【点睛】此题主要考查了提取公因式法和公式法分解因式,正确找出公因式是解题关键4、B【解析】【分析】直接找出公因式进而提取公因式,进行分解因式即可【详解】解:故选:B【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键5、D【解析】【分析】利用完全平方公式把,分解因式,利用平方差公式把,从而可

7、得答案.【详解】解:故A不符合题意;故B不符合题意;故C不符合题意;,不能用公式法分解因式,故D符合题意;故选D【点睛】本题考查的是利用平方差公式与完全平方公式分解因式,熟悉平方差公式与完全平方公式的特点是解题的关键.6、C【解析】【分析】由题意依据因式分解的定义即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可【详解】解:A、,是整式的乘法,不是因式分解故A错误;B、,是整式不是因式分解;C、,是因式分解;D、右边不是整式的积的形式(含有分式),不是因式分解;故选:C【点睛】本题考查了因式分解的意义,注意因式分解后左边和右边是相等的,不能凭空想象右边

8、的式子7、D【解析】【分析】利用提公因式法、公式法逐项进行因式分解即可【详解】解:A、,所以该选项不符合题意;B、,所以该选项不符合题意;C、是整式的乘法,所以该选项不符合题意;D、,所以该选项符合题意;故选:D【点睛】本题考查了提公因式法、公式法分解因式,掌握平方差公式、完全平方公式的结构特征是解决问题的关键8、A【解析】【分析】两个数的和与这两个数的差的积等于这两个数的平方差,用字母表示为,根据平方差公式的构成特点,逐个判断得结论【详解】A能变形为x212,符合平方差公式的特点,能用平方差公式分解因式;B多项式含有三项,不能用平方差公式分解因式;C多项式含有三项,不能用平方差公式分解因式;

9、D多项式含有三项,不能用平方差公式分解因式故选:A【点睛】本题考查了运用平方差公式进行因式分解,熟记平方差公式的结构特点是求解的关键9、A【解析】【分析】根据因式分解的定义逐个判断即可【详解】解:A是因式分解,故本选项符合题意;B等式的左边不是多项式,所以不是因式分解,故本选项不合题意; C等式的右边不是几个整式的积的形式,所以不是因式分解,故本选项不合题意;D等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;故选:A【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解10、A【解析】【分析】左图中阴

10、影部分的面积a2b2,右图中矩形面积(ab)(ab),根据二者面积相等,即可解答【详解】解:由题意可得:a2b2(ab)(ab)故选:A【点睛】此题主要考查了乘法的平方差公式,属于基础题型二、填空题1、2022【解析】【分析】将已知条件变形为a21a、a2a1,然后将代数式a32a22021进一步变形进行求解【详解】解:a2a10,a21a、a2a1,a32a22021,aa22(1a)2021,a(1a)22a2021,aa22a2023,a2a2023,(a2a)2023,120232022故答案为:2022【点睛】本题考查了求代数式的值,是一道涉及因式分解的计算题,考查了拆项法分 解因式

11、的运用,提公因式法的运用2、【解析】【分析】利用提公因式法进行因式分解即可得【详解】解:原式,故答案为:【点睛】本题考查了因式分解(提公因式法),熟练掌握因式分解的各方法是解题关键3、#【解析】【分析】利用平方差公式计算即可【详解】解:原式=,故答案为:【点睛】本题考查了利用平方差公式分解因式,掌握平方差公式的特征是解题的关键4、【解析】【分析】根据提取公因式和平方差公式进行分解即可;【详解】原式;故答案是:【点睛】本题主要考查了利用提取公因式和平方差公式因式分解,准确求解是解题的关键5、-8【解析】【分析】将提取公因式,在整体代入求值即可【详解】,故答案为:-8【点睛】本题考查代数式求值和因

12、式分解,利用整体代入的思想是解答本题的关键三、解答题1、(1);(2)【解析】【分析】(1)由题意提取公因式ab,进而利用平方差公式进行因式分解;(2)根据题意先利用平方差公式进行运算,进而利用完全平方公式进行因式分解.【详解】解:(1)原式(2)原式【点睛】本题考查分解因式,熟练掌握利用提取公因式法和公式法进行因式分解是解题的关键.2、(1);(2)【解析】【分析】(1)先提取公因式 再利用平方差公式分解因式即可;(2)先计算整式的乘法运算,再利用完全平方公式分解因式即可.【详解】解:(1) (2)【点睛】本题考查的是综合提公因式与公式法分解因式,掌握“利用平方差公式与完全平方公式分解因式”

13、是解本题的关键.3、(1);1;(2);【解析】【分析】(1)根据c=ab中,c的所有这些分解中,如果a,b两因数之差的绝对值最小,就称ab是c的最优分解,因此M(8)=,M(24)=,M(c+1)2= ;(2)设这个两位正整数d交换其个位上的数与十位上的数得到的新数为d,则d+d=(10x+y)+(10y+x)=11x+11y=11(x+y)=66,由于x,y都是自然数,且1xy9,所以满足条件的“吉祥数”有15、24、33所以M(15)=,M(24)=,M(33)=,所以所有“吉祥数”中M(d)的最大值为【详解】解:(1)由题意得,M(8)=;M(24)=;M(c+1)2=;(2)设这个两

14、位正整数d交换其个位上的数与十位上的数得到的新数为d,则d+d=(10x+y)+(10y+x)=11x+11y=11(x+y)=66,x,y都是自然数,且1xy9,满足条件的“吉祥数”有15、24、33M(15)=,M(24)=,M(33)=,所有“吉祥数”中M(d)的最大值为【点睛】本题考查了分解因式的应用,根据示例进行分解因式是解题的关键4、(1)n(m2)(n+1);(2)(a+2)2(a2)2【解析】【分析】(1)提取公因式,进行因式分解即可;(2)根据平方差公式以及完全平方公式因式分解即可【详解】(1)n2(m2)n(2m)n2(m2)+n(m2)n(m2)(n+1);(2)(a2+4)216a2(a2+4)2(4a)2(a2+4a+4)(a24a+4)(a+2)2(a2)2【点睛】本题考查了因式分解,掌握提公因式法和公式法分解因式是解题的关键,注意分解要彻底5、(1);(2)【解析】【分析】(1)先提取公因式,然后利用公式法进行因式分解即可;(2)先利用乘法交换律进行变换,然后根据多项式乘以多项式分两组计算,将看作一个整体,继续进行多项式乘法运算,最后运用公式法进行因式分解即可【详解】解:(1),;(2),【点睛】题目主要考查因式分解的方法提公因式法和公式法的综合运用,熟练掌握因式分解的方法是解题关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁