《2022中考特训人教版初中数学七年级下册第九章不等式与不等式组定向练习试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《2022中考特训人教版初中数学七年级下册第九章不等式与不等式组定向练习试题(含详细解析).docx(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册第九章不等式与不等式组定向练习(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、若整数a使得关于x的方程的解为非负数,且使得关于y的一元一次不等式组至少有3个整数解则所有符合条件的整数a的和为( )A23B25C27D282、如果,那么下列不等式中正确的是( )ABCD3、在数轴上点A,B对应的数分别是a,b,点A在表示3和2的两点之间(包括这两点)移动,点B在表示1和0的两点(包括这两点)之间移动,则以下四个代数式的值可能比2021大的是()ABCD4、若0m1,则m、m2
2、、的大小关系是( )Amm2Bm2mCmm2Dm2m5、某校在一次外出郊游中,把学生编为9个组,若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,那么每组预定的学生人数为()A24人B23人C22人D不能确定6、对于不等式4x+7(x-2)8不是它的解的是( )A5B4C3D27、若,则x一定是( )A零B负数C非负数D负数或零8、在数轴上表示不等式的解集正确的是( )ABCD9、在数轴上表示不等式组1x3,正确的是()ABCD10、下列语句中,是命题的是()若160,260,则12;同位角相等吗?画线段ABCD;如果ab,bc,那么ac;直角
3、都相等ABCD二、填空题(5小题,每小题4分,共计20分)1、 “x的3倍与2的和不大于5”用不等式表示为 _2、已知那么|x-3|+|x-1|=_3、如图所示,在天平右盘中的每个砝码的质量都是1g,则物体A的质量m(g)的取值范围为_4、 “x与2的差不小于x的5倍”用不等式表示为_5、安排学生住宿,若每间住3人,则还有13人无房可住;若每间住6人,则还有一间不空也不满,则宿舍的房间数量可能为_三、解答题(5小题,每小题10分,共计50分)1、(1)若xy,比较3x+5与3y+5的大小,并说明理由;(2)解不等式组:,并把它的解集在数轴上表示出来2、解不等式组:(1);(2)153、用等号或
4、不等号填空:(1)比较2x与x2+1的大小:当x=2时,2x x2+1当x=1时,2x x2+1当x=1时,2x x2+1(2)任选取几个x的值,计算并比较2x与x2+1的大小;4、定义:如果一元一次方程的解也是一元一次不等式组的解,则称该一元一次方程为该不等式组的“相伴方程”例如:方程2x60的解为x3,不等式组的解集为2x5因为235所以称方程2x60为不等式组的相伴方程(1)若关于x的方程2xk2是不等式组的相伴方程,求k的取值范围;(2)若方程2x+40,1都是关于x的不等式组的相伴方程,求m的取值范围;(3)若关于x的不等式组的所有相伴方程的解中,有且只有2个整数解,求n的取值范围5
5、、在防控新型冠状病毒期间,甲、乙两个服装厂都接到了制做同一种型号的医用防护服任务,已知甲、乙两个服装厂每天共制做这种防护服100套,甲服装厂3天制做的防护服与乙服装厂2天制做的防护服套数相同(1)求甲、乙两个服装厂每天各制做多少套这种防护服;(2)现有1200套这种防护服的制做任务,要求不超过10天完成,若乙服装厂每天多做8套,那么甲服装厂每天至少多做多少套?-参考答案-一、单选题1、B【分析】表示出不等式组的解集,由不等式至少有四个整数解确定出a的值,再由分式方程的解为非负数以及分式有意义的条件求出满足题意整数a的值,进而求出之和【详解】解:,解不等式得:,解不等式得:不等式组的解集为:,由
6、不等式组至少有3个整数解, ,即整数a2,3,4,5,解得:,方程的解为非负数,得到符合条件的整数a为3,4,5,6,7,之和为25故选B【点睛】此题考查了解一元一次方程,以及解一元一次不等式组,熟练掌握运算法则是解本题的关键2、A【分析】根据不等式的性质解答【详解】解:根据不等式的性质3两边同时除以2可得到,故A选项符合题意;根据不等式的性质1两边同时减去1可得到,故B选项不符合题意;根据不等式的性质2两边同时乘以-1可得到,故C选项不符合题意;根据不等式的性质1和2:两边同时乘以-1,再加上2可得到,故D选项不符合题意;故选:A【点睛】此题考查不等式的性质:性质一:不等式两边加减同一个数,
7、不等号方向不变;性质二:不等式两边同乘除同一个正数,不等号方向不变;性质三:不等式两边同乘除同一个负数,不等号方向改变3、C【分析】根据已知条件得出,求出,再分别求出每个式子的范围,根据式子的范围即可得出答案【详解】,故A选项不符合题意;,故B选项不符合题意;可能比2021大,故C选项符合题意;,故D选项不符合题意;故选:C【点睛】本题考查数轴、倒数、有理数的混合运算,求出每个式子的范围是解题的关键4、B【分析】根据0m1,可得m越小平方越小, 1,继而结合选项即可得出答案【详解】解:0m1,可得m2m,1,可得:m2m故选:B【点睛】此题考查了不等式的性质及有理数的乘方,属于基础题,关键是掌
8、握当0m1时,m的指数越大则数值越小,难度一般5、C【分析】根据若每组比预定的人数多1人,则学生总数超过200人;若每组比预定的人数少1人,则学生总数不到190人,可以列出相应的不等式组,再求解,注意x为整数【详解】解:设每组预定的学生数为x人,由题意得,解得是正整数故选:C【点睛】本题考查一元一次不等式组的应用,属于常规题,掌握相关知识是解题关键6、D【分析】根据不等式的解的含义把每个选项的数值代入不等式的左边进行计算,满足左边大于右边的是不等式的解,不满足左边大于右边的就不是不等式的解,从而可得答案.【详解】解:当x5时,4x+7(x-2)418,当x4时,4x+7(x-2)308,当x3
9、时,4x+7(x-2)198,当x2时,4x+7(x-2)8故知x2不是原不等式的解故A,B,C不符合题意,D符合题意,故选D【点睛】本题考查的是不等式的解的含义,理解不等式的解的含义并进行判断是解本题的关键.7、D【分析】根据绝对值的性质可得,求解即可【详解】解:,解得故选D【点睛】此题考查了绝对值和不等式的性质,解题的关键是熟练掌握绝对值和不等式的有关性质8、A【分析】根据在数轴上表示不等式的解集的方法进行判断即可【详解】在数轴上表示不等式的解集如下:故选:【点睛】本题考查不等式在数轴上的表示,掌握不等式在数轴上的画法是解题的关键9、C【分析】把不等式组的解集在数轴上表示出来即可【详解】解
10、:,在数轴上表示为:故选:C【点睛】本题考查的是在数轴上表示不等式的解集,解题的关键是熟知“小于向左,大于向右”的法则10、A【分析】根据命题的定义分别进行判断即可【详解】解:若160,260,则12,是命题,符合题意;同位角相等吗?是疑问句,不是命题,不符合题意;画线段ABCD,没有对事情作出判断,不是命题,不符合题意;如果ab,bc,那么ac,是命题,符合题意;直角都相等,是命题,符合题意,命题有故选:A【点睛】本题考查了命题与定理:判断事物的语句叫命题,命题有题设与结论两部分组成;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理二、填空题1、3x+25【分析】不大
11、于就是小于等于的意思,根据x的3倍与2的和不大于5,可列出不等式【详解】解:由题意得:3x+25,故答案为:3x+25【点睛】本题考查由实际问题抽象出一元一次不等式,关键是抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式2、2【分析】先求出不等式组的解集,再根据x的取值化简绝对值即可求解【详解】解:解不等式得, 解不等式得, 不等式组的解集为: ,x-30,x-10, 故答案为:2【点睛】本题考查了求不等式组的解集和绝对值的化简,正确求出不等式组的解集,正确化简绝对值是解题关键3、1m2【分析】根据左右两个天平的倾斜得出不等式即可;【详解】由第一
12、幅图得m1,由第二幅图得m2,故1m2;故答案是:1m2【点睛】本题主要考查了一元一次不等式的解集,准确分析计算是解题的关键4、【分析】应理解:不小于,即大于或等于【详解】根据题意,得x-25x故答案是:x-25x【点睛】本题主要考查了由实际问题抽象出一元一次不等式,读懂题意,抓住关键词语,弄清运算的先后顺序和不等关系,才能把文字语言的不等关系转化为用数学符号表示的不等式本题不小于即“”5、5或6【分析】设共有间宿舍,则共有个学生,然后根据每间住6人,则还有一间不空也不满,列出不等式组进行求解即可【详解】解:设共有间宿舍,则共有个学生,依题意得:,解得:又为正整数,或6故答案为:5或6【点睛】
13、本题主要考查了一元一次不等式组的应用,解题的关键在于能够准确根据题意列出不等式组进行求解三、解答题1、(1)3x+53y+5;(2)1x2,数轴上表示见解析【解析】【分析】(1)先在xy的两边同乘以3,变号,再在此基础上同加上5,不变号,即可得出结果;(2)分别求出各不等式的解集,再求出其公共解集并在数轴上表示出来即可【详解】解:(1)xy,不等式两边同时乘以3得:(不等式的基本性质3)3x3y,不等式两边同时加上5得:53x53y;3x+53y+5;(2),解不等式,得x2,解不等式,得x1,原不等式组的解集为:1x2,在数轴上表示不等式组的解集为:【点睛】主要考查了不等式的基本性质和解一元
14、一次不等式组,熟知“同大取较大,同小取较小,小大大小中间找,大大小小解不了”的原则是解答此题的关键2、(1)2x2;(2)1x8【解析】【分析】(1)先解出每个不等式的解集,即可得到不等式组的解集;(2)先将题目中的不等式,转化为不等式组,再解出每个不等式的解集,即可得到不等式组的解集【详解】解:(1),解不等式,得:x2,解不等式,得:x2,故原不等式组的解集是2x2;(2)15,解不等式,得:x1,解不等式,得:x8,故原不等式组的解集是1x8【点睛】本题考查解一元一次不等式组,解答本题的关键是明确解一元一次不等式组的方法3、(1),=,;(2)当x=3时,2xx2+1,当x=2时,2xx
15、2+1【解析】【分析】(1)将x的值代入不等号两边的代数式中,比较大小即可得;(2)任选两个值,按照(1)中方法代入求值,然后比较大小即可得【详解】解:(1)比较2x与的大小:当时,;当时,;当时,;故答案为:,;(2)当时,;当时,【点睛】题目主要考查不等式的性质,熟练掌握不等式的性质是解题关键4、(1)3k4;(2)2m3;(3)4n6【解析】【分析】(1)首先求出方程2xk2的解和不等式组的解集,然后根据“相伴方程”的概念列出关于k的不等式组求解即可;(2)首先求出方程2x+40,1的解,然后分m2和m2两种情况讨论,根据“相伴方程”的概念即可求出m的取值范围;(3)首先表示出不等式组的
16、解集,然后根据题意列出关于n的不等式组求解即可【详解】解:(1)不等式组为,解得,方程为2xk2,解得x,根据题意可得,解得:3k4,故k取值范围为:3k4(2)方程为2x+40,解得:x2,x1;不等式组为,当m2时,不等式组为,此时不等式组解集为x1,不符合题意,应舍去;当m2时不等式组解集为m5x1,根据题意可得,解得2m3;故m取值范围为:2m3(3)不等式组为,解得1x,根据题意可得,3,解得4n6,故n取值范围为4n6【点睛】此题考查了新定义问题,一元一次方程和一元一次不等式组含参数问题,解题的关键是正确分析新定义的“相伴方程”概念,并列出方程求解5、(1)甲服装厂每天制做40套这
17、种防护服,乙服装厂每天制做60套这种防护服;(2)12套【解析】【分析】(1)设甲服装厂每天制做x套这种防护服,则乙服装厂每天制做(100x)套这种防护服,根据甲服装厂3天制做的防护服与乙服装厂2天制做的防护服套数相同,列方程得3x2(100x),求出x,再求代数式(100x)值即可;(2)设甲服装厂每天多做m套,利用工作总量工作效率工作时间,结合两服装厂10天至少生产1200套这种防护服,列出不等式10(40+m)+(60+8)1200,解之即可【详解】解:(1)设甲服装厂每天制做x套这种防护服,则乙服装厂每天制做(100x)套这种防护服,依题意得:3x2(100x),解得:x40,100x1004060答:甲服装厂每天制做40套这种防护服,乙服装厂每天制做60套这种防护服(2)设甲服装厂每天多做m套,依题意得:10(40+m)+(60+8)1200,解得:m12答:甲服装厂每天至少多做12套【点睛】本题考查一元一次方程的应用、一元一次不等式的应用,读懂题意,找到各数量之间的关系,正确列出方程和不等式是解答的关键