《2022年强化训练北师大版七年级数学下册第六章概率初步定向攻克试卷(含答案详细解析).docx》由会员分享,可在线阅读,更多相关《2022年强化训练北师大版七年级数学下册第六章概率初步定向攻克试卷(含答案详细解析).docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版七年级数学下册第六章概率初步定向攻克 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、学校招募运动会广播员,从三名男生和一名女生共四名候选人中随机选取一人,则选中男生的概率为( )ABCD2、一个黑
2、色布袋中装有3个红球和2个白球,这些球除颜色外其它都相同,从袋子中随机摸出一个球,这个球是白球的概率是( )ABCD3、在一个不透明的袋中装有9个只有颜色不同的球,其中4个红球、3个黄球和2个白球,从袋中任意摸出一个球,是白球的概率为( )ABCD4、下列事件是必然事件的是( )A打开电视机,正在放新闻Ba是实数,|a|0C在纸上任意画两条直线,它们相交D在一个只装有红球的盒子里摸到白球5、 “翻开九年级上册数学书,恰好翻到第100页”,这个事件是( )A必然事件B随机事件C不可能事件D确定事件6、一枚质地均匀的骰子,其六个面上分别标有数字1,2,3,4,5,6,投掷一次,朝上一面的数字是偶数
3、的概率为( )ABCD7、投掷一枚质地均匀的硬币m次,正面向上n次,下列表达正确的是( )A的值一定是B的值一定不是Cm越大,的值越接近D随着m的增加,的值会在附近摆动,呈现出一定的稳定性8、 “抚顺市明天降雪的概率是70%”,对此消息,下列说法中正确的是()A抚顺市明天将有70%的地区降雪B抚顺市明天将有70%的时间降雪C抚顺市明天降雪的可能性较大D抚顺市明天肯定不降雪9、数学老师将全班分成7个小组开展小组合作学习,采用随机抽签的办法确定一个小组进行展示活动,则第2小组被抽到的概率是( )ABCD10、下列事件中属于必然事件的是( )A随机买一张电影票,座位号是奇数号B打开电视机,正在播放新
4、闻联播C任意画一个三角形,其外角和是D掷一枚质地均匀的硬币,正面朝上第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、投掷一枚质地均匀的正方体骰子,当骰子停止后,朝上一面的点数是“5”的概率是_2、一个不透明的袋子里有3个红球和5个白球,每个球除颜色外都相同,从袋中任意摸出一个球,是红球的可能性_(填“大于”“小于”或“等于”)是白球的可能性3、在4张完全一样的纸条上分别写上1、2、3、4,做成4支签,放入一个不透明的盒子中搅匀,则抽到的签是偶数的概率是 _4、有五张正面分别标有数字2,1,0,1,2的卡片,它们除数字不同外其余全部相同现将它们背面朝上,洗匀后从中随机抽取
5、一张,记卡片上的数字为k,则使双曲线y过二、四象限的概率是_5、真实惠举行抽奖活动,在一个封闭的盒子里有400张形状一模一样的纸片,其中有20张是一等奖,摸到二等奖的概率是10,摸到三等奖的概率是20%,剩下是“谢谢惠顾”,则盒子中有“谢谢惠顾”_张三、解答题(5小题,每小题10分,共计50分)1、一只蚂蚁在如图所示的树枝上寻觅食物,假定蚂蚁在每个岔路口都随机选择一条路径,它获得食物的概率是多少?2、从一定高度落下的图钉,落地后可能图钉尖着地,也可能图钉尖不着地估计哪种事件的概率更大,与同学们合作,通过做试验验证你事先的估计是否正确3、一个不透明的口袋中放着若干个红球和黑球,这两种球除了颜色之
6、外没有其他任何区别,袋中的球已经搅匀,闭眼从口袋中摸出一个球,经过很多次实验发现摸到红球的频率逐渐稳定在(1)估计摸到黑球的概率是 ;(2)如果袋中原有红球12个,又放入n个黑球,再经过很多次实验发现摸到黑球的频率逐渐稳定在,求n的值4、五名同学参加演讲比赛,以抽签方式决定每个人的出场顺序为了抽签,我们在盒中放五个看上去完全一样的纸团,每个纸团里面分别写着表示出场顺序的数字1,2,3,4,5把纸团充分搅拌后,小军先抽,他任意(随机)从盒中抽取一个纸团请思考以下问题:(1)抽到的数字有几种可能的结果?(2)抽到的数字小于6吗?(3)抽到的数字会是0吗?(4)抽到的数字会是1吗?5、随着人们生活水
7、平的提高,对食品的要求越来越高,蛋糕的新鲜度也受到大家的关注某蛋糕店出售一种保质期较短的蛋糕,每天制作这种蛋糕若干块,且制做的蛋糕当天能全部售完,已知每块蛋糕的成本为元,售价为元,若当天下午点前出售不完剩下的蛋糕则以每块元低价售出,该蛋糕店记录了天这种蛋糕每天下午点前的售出量,整理成如下的统计表:每天下午点前的售出量/块天数(1)估计这天中,这种蛋糕每天下午点前的售出量不少于块的概率;(2)若该蛋糕店一天计划制作这种蛋糕块或块,请你以这种蛋糕一天的平均盈利作为决策依据,该蛋糕店这一天应该制作这种蛋糕块还是块?并说明理由-参考答案-一、单选题1、D【分析】直接利用概率公式求出即可【详解】解:共四
8、名候选人,男生3人,选到男生的概率是:故选:D【点睛】本题考查了概率公式;用到的知识点为:概率=所求情况数与总情况数之比2、D【分析】根据随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A),进行计算即可【详解】解:一个黑色布袋中装有3个红球和2个白球,这些球除颜色外其它都相同,抽到每个球的可能性相同,布袋中任意摸出1个球,共有5种可能,摸到白球可能的次数为2次,摸到白球的概率是,P(白球)故选:D【点睛】本题考查了随机事件概率的求法,熟练掌握随机事件概率公式是解题关键3、D【分析】根据袋子中共有9个小球,其中白球有2个,即可得
9、【详解】解:袋子中共有9个小球,其中白球有2个,摸出一个球是白球的概率是,故选D【点睛】本题考查了概率,解题的关键是找出符合题目条件的情况数4、B【分析】根据事先能肯定它一定会发生的事件称为必然事件依次判断即可【详解】解:A、打开电视机,正在放新闻,是随机事件,不符合题意;B、a是实数,|a|0,是必然事件,符合题意;C、在纸上任意画两条直线,它们相交,是随机事件,不符合题意;D、在一个只装有红球的盒子里摸到白球,是不可能事件,不符合题意;故选B【点睛】本题考查事件发生的可能性大小事先能肯定它一定会发生的事件称为必然事件,事先能肯定它一定不会发生的事件称为不可能事件,在一定条件下,可能发生也可
10、能不发生的事件,称为随机事件掌握必然事件的有关概念是解题的关键5、B【详解】解:“翻开九年级上册数学书,恰好翻到第100页”,这个事件是随机事件,故选:B【点睛】本题考查了随机事件,熟记随机事件的定义(在一定条件下,可能发生也可能不发生的事件称为随机事件)是解题关键6、B【分析】朝上的数字为偶数的有3种可能,再根据概率公式即可计算【详解】解:依题意得P(朝上一面的数字是偶数)故选B【点睛】此题主要考查概率的计算,解题的关键是熟知概率公式进行求解7、D【分析】根据频率与概率的关系以及随机事件的定义判断即可【详解】投掷一枚质地均匀的硬币正面向上的概率是,而投掷一枚质地均匀的硬币正面向上是随机事件,
11、是它的频率,随着m的增加,的值会在附近摆动,呈现出一定的稳定性;故选:D【点睛】本题考查对随机事件的理解以及频率与概率的联系与区别解题的关键是理解随机事件是都有可能发生的时间8、C【分析】概率值只是反映了事件发生的机会的大小,不是会一定发生不确定事件就是随机事件,即可能发生也可能不发生的事件,发生的概率大于0并且小于1【详解】解:“抚顺市明天降雪的概率是70%”,正确的意思是:抚顺市明天降雪的机会是70%,明天降雪的可能性较大故选C【点睛】本题考查概率的意义,解题关键是理解概率的意义反映的只是这一事件发生的可能性的大小9、B【分析】根据概率是所求情况数与总情况数之比,可得答案【详解】解:第3个
12、小组被抽到的概率是,故选:B【点睛】本题考查了概率的知识用到的知识点为:概率所求情况数与总情况数之比10、C【分析】根据必然事件的定义:在一定条件下一定会发生的事件,进行逐一判断即可【详解】解:A、随机买一张电影票,座位号可以是奇数也可以是偶数,不是必然事件,故此选项不符合题意;B、打开电视机,可以正在播放也可以不在播放新闻联播,不是必然事件,故此选项不符合题意;C、任意画一个三角形,其外角和是360,是必然事件,故此选项符合题意;D、掷一枚质地均匀的硬币,可以正面朝上也可以反面朝上,不是必然事件,故此选项不符合题意;故选C【点睛】本题主要考查了必然事件,解题的关键在于能够熟练掌握必然事件的定
13、义二、填空题1、【分析】根据概率的计算公式计算【详解】一枚质地均匀的正方体骰子有6种等可能性,朝上一面的点数是“5”的概率是,故答案为:【点睛】本题考查了概率的计算,熟练掌握概率的计算公式是解题的关键2、小于【分析】根据“哪种球的数量大哪种球的可能性就大”直接确定答案即可【详解】解:袋子里有3个红球和5个白球,红球的数量小于白球的数量,从中任意摸出1只球,是红球的可能性小于白球的可能性故答案为:小于【点睛】本题考查了可能性的大小,可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等3、#【分析】根据题意可知有4种等可能的
14、情况,其中为偶数的有2种可能,进而问题可求解【详解】解:由题意得:抽到的签是偶数的概率为;故答案为【点睛】本题主要考查概率,熟练掌握概率公式是解题的关键4、【分析】若双曲线y过二、四象限,利用反比例函数的性质得出,求得符合题意的数字为-2,-1,再利用随机事件的概率=事件可能出现的结果数所有可能出现的结果数即可求出结论【详解】解:双曲线y过二、四象限, , 符合题意的数字为-2,-1,该事件的概率为,故答案为:【点睛】本题考查了概率公式,利用反比例函数的性质,找出使得事件成立的k的值是解题的关键5、260【分析】先求出一等奖的概率,然后利用频数=总数概率求解即可【详解】解:由题意得:一等奖的概
15、率=,盒子中有“谢谢惠顾”张,故答案为:260【点睛】本题主要考查了利用概率求频数,解题的关键在于能够熟练掌握频数=总数概率三、解答题1、【分析】根据题意分析,根据获得食物的路径数除以路径总数,即可求解 【详解】解:由图可知寻找食物的路径共有2226(条),而获得食物的路径共有2条,所以P(获得食物)【点睛】本题考查了简单概率公式的计算,熟悉概率公式是解题的关键2、图钉尖不着地的概率大,试验验证见解析【分析】根据图钉帽比图钉尖稍重可知图钉尖不着地的概率大,然后与同学进行试验验证即可【详解】解:图钉尖不着地的概率大,因为图钉帽较重,所以着地的可能性比钉尖大可把全班同学分成若干个组进行试验,记录下
16、结果,然后把试验结果汇总,用多次试验的稳定值估计出概率【点睛】本题主要考查了判断事件发生的概率,解题的关键在于能够明白图钉帽比图钉尖稍重3、(1);(2)n6【分析】(1)取出黑球的概率1取出红球的概率;(2)首先根据红球的个数和摸出红球的概率求得黑球的个数,然后根据概率公式列式求解即可【详解】解:(1)P(取出黑球)1P(取出红球)1;故答案为:;(2)设袋子中原有黑球x个,根据题意得:,解得:x18,经检验x18是原方程的根,所以黑球有18个,又放入了n个黑球,根据题意得:,解得:n6经检验:符合题意【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,
17、并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势,估计概率,这个固定的近似值就是这个事件的概率4、(1)5;(2)抽到的数字一定小于6;(3)抽到的数字绝对不会是0;(4)抽到的数字可能是1,也可能不是1,事先无法确定【分析】(1)一共有1-5五个数字,每个数字都有可能被抽到,所以有五种可能的结果;(2)数字1,2,3,4,5都小于6,所以抽到的数字一定小于6;(3)数字1,2,3,4,5都大于0,所以抽到的数字一定大于0;(4)一共有1-5五个数字,每个数字都有可能被抽到,所以抽到的数字可能是1,可能不是1【详解】通过简单的推理或试验,可以发现:(1)数字1,2,3,4,
18、5都有可能抽到,共有5种可能的结果,但是事先无法预料一次抽取会出现哪一种结果;(2)抽到的数字一定小于6;(3)抽到的数字绝对不会是0;(4)抽到的数字可能是1,也可能不是1,事先无法确定【点睛】题目主要考查随机事件的概率,结合实际、理解题意是解题关键5、(1);(2)19块,理由见解析【分析】(1)根据表格信息解得每天下午点前的售出量不少于块的天数为78天,再根据概率公式解题;(2)分两种情况讨论,若该蛋糕店这一天制作这种蛋糕块,或若该蛋糕店这一天制作这种蛋糕块,分别计算获得的利润、低价售出的损失,继而解得净利润,再比较解题【详解】解:(1)由统计表可得,这天中,蛋糕每天下午点前的售出量不少于块的天数为(天),(蛋糕每天下午点前的售出量不少于块);(2)该蛋糕店这一天应该制作这种蛋糕块,理由如下:若该蛋糕店这一天制作这种蛋糕块,则可得:每天下午点前的售出量/块频率利润获得的利润为(元),低价售出的损失为(元)则净利润为(元);若该蛋糕店这一天制作这种蛋糕块,则可得:每天下午点前的售出量/块频率利润获得的利润为(元),低价售出的损失为(元),则净利润为(元),该蛋糕店这一天应该制作这种蛋糕块【点睛】本题概率以及销售利润等知识,是重要考点,掌握相关知识是解题关键