《2022年北师大版八年级数学下册第四章因式分解定向测试试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《2022年北师大版八年级数学下册第四章因式分解定向测试试题(含详细解析).docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第四章因式分解定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、把多项式x32x2+x分解因式结果正确的是( )Ax(x22x)Bx2(x2)Cx(x+1)(x1)Dx(x1)
2、22、已知a22a10,则a42a32a1等于( )A0B1C2D33、因式分解m2-m-6正确的是( )A(m+2)(m-3)B(m-2)(m+3)C(m-2)(m-3)D(m+2)(m+3)4、下列等式中,从左到右的变形是因式分解的是( )Aa(a-3)=a2-3aB(a+3)2=a2+6a+9C6a2+1=a2(6+)Da2-9=(a+3)(a-3)5、下列各组式子中,没有公因式的一组是()A2xy与xB(ab)2与abCcd与2(dc)Dxy与x+y6、下列从左到右的变形,是分解因式的是()Axy2(x1)=x2y2xy2B2a2+4a=2a(a+2)C(a+3)(a3)=a29Dx2
3、+x5=(x2)(x+3)+17、可以被24和31之间某三个整数整除,这三个数是( )A25,26,27B26,27,28C27,28,29D28,29,308、下列因式分解正确的是()ABCD9、下列由左到右的变形,是因式分解的是( )ABCD10、下列式子从左到右的变形中,属于因式分解的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在实数范围内因式分解:x26x+1_2、(_)(_);(_)(_);(_)(_);(_)(_);(_)(_);(_)(_)3、若ABC的三条边a,b,c满足关系式:a4b2c2a2c2b40,则ABC的形状是_4、因式分
4、解:5a245b2_5、观察下列因式分解中的规律:;利用上述系数特点分解因式_三、解答题(5小题,每小题10分,共计50分)1、(1)计算:(x+2)(4x1)(2x1)2;(2)因式分解:a3b2a2b2+ab32、因式分解(1)ax28ax16a; (2)x481x2y23、分解因式(1)(2)4、 ((1)(2)小题计算,(3)(4)小题因式分解)(1);(2)(x2y)(3x+2y);(3)9(xy)+4(yx) ; (4) a+2x+ 5、分解因式:(1);(2)-参考答案-一、单选题1、D【分析】先提取公因式,再按照完全平方公式分解即可得到答案.【详解】解:x32x2+x 故选D【
5、点睛】本题考查的是综合利用提公因式与公式法分解因式,掌握“利用完全平方公式分解因式”是解本题的关键.2、C【分析】由a22a10,得出a22a1,逐步分解代入求得答案即可【详解】解:a22a10,a22a1,a42a32a+1a2(a22a)2a+1a22a+11+12故选:C【点睛】此题考查因式分解的实际运用,分组分解和整体代入是解决问题的关键3、A【分析】先把分解 再利用十字乘法分解因式,再逐一分析各选项,从而可得答案.【详解】解: m2-m-6故选A【点睛】本题考查的是利用十字乘法分解因式,掌握“利用十字乘法分解因式”是解题的关键.4、D【分析】根据分解因式的意义:把一个多项式化为几个整
6、式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式;进行作答即可【详解】解:A、a(a-3)=a2-3a,属于整式乘法,不符合题意;B、(a+3)2=a2+6a+9,属于整式乘法,不符合题意;C、6a2+1=a2(6+)不是因式分解,不符合题意;D、a2-9=(a+3)(a3)属于因式分解,符合题意;故选:D【点睛】本题考查了因式分解的意义,属于基础题,解答本题的关键是熟练掌握因式分解的定义与形式5、D【分析】根据公因式是各项中的公共因式逐项判断即可【详解】解:A、2xy与x有公因式x,不符合题意;B、(ab)2与ab有公因式ab,不符合题意;C、cd与2(dc)有公因式cd,不符
7、合题意;D、xy与x+y没有公因式,符合题意,故选:D【点睛】本题考查公因式,熟练掌握确定公因式的方法是解答的关键6、B【分析】根据因式分解的意义对各选项进行逐一分析即可【详解】解:、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意;、符合因式分解的意义,是因式分解,故本选项正确,符合题意;、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意;、等式右边不是整式积的形式,故不是分解因式,故本选项错误,不符合题意故选:B【点睛】本题考查的是因式分解的意义,解题的关键是把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式7、B【分析
8、】先提取公因式27,再逐步利用平方差公式分解因式,即可得到答案.【详解】解: 所以可以被26,27,28三个整数整除,故选B【点睛】本题考查的是利用平方差公式分解因式,掌握平方差公式的特点并灵活应用是解本题的关键.8、A【分析】根据因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做因式分解,进行判断即可【详解】解:A、,选项说法正确,符合题意;B、,选项说法错误,不符合题意;C、是整式乘法运算,不是因式分解,选项说法错误,不符合题意;D、,选项说法错误,不符合题意;故选A【点睛】本题考查了因式分解,解题的关键是掌握因式分解的定义以及分解的正确性9、A【分析】根据因式分解的定义,对
9、各选项作出判断,即可得出正确答案【详解】解:A、,是因式分解,故此选项符合题意;B、,原式分解错误,故本选项不符合题意;C、右边不是整式的积的形式,故本选项不符合题意;D、原式是整式的乘法运算,不是因式分解,故本选项不符合题意;故选:A【点睛】本题考查了分解因式的定义解题的关键是掌握分解因式的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式10、B【分析】把一个多项式化为几个整式的积的形式叫把这个多项式分解因式,根据定义逐一判断即可.【详解】解:是整式的乘法,故A不符合题意;是因式分解,故B符合题意;右边不是整式的积的形式,不是因式分解,故C不符合题意
10、;右边不是整式的积的形式,不是因式分解,故D不符合题意;故选B【点睛】本题考查的是因式分解的定义,掌握“根据因式分解的定义判断变形是否是因式分解”是解本题的关键.二、填空题1、【分析】将该多项式拆项为,然后用平方差公式进行因式分解【详解】故答案为:【点睛】本题考查了因式分解,当要求在实数范围内进行因式分解时,分解的式子的结果一般要分到出现无理数为止2、;【分析】利用十字相乘法进行因式分解即可得【详解】解:;故答案为:;【点睛】本题考查了利用十字相乘法进行因式分解,熟练掌握十字相乘法是解题关键二次三项式,若存在 ,则3、直角三角形或等腰三角形【分析】将a4b2c2a2c2b40因式分解,然后分析
11、不难得到三角形的形状【详解】解答:解:a4b2c2a2c2b40,(a2b2)(a2b2)c2(a2b2)0(a2b2)(a2b2c2)0a2b20或a2b2c20ABC为等腰三角形或直角三角形故答案为:直角三角形或等腰三角形【点睛】此题主要考查学生对因式分解法,等腰三角形的判定及勾股定理的综合运用能力,关键是对等式进行合理的因式分解4、【分析】原式提取公因式5,再利用平方差公式分解即可【详解】解:原式5(a29b2)5(a+3b)(a3b)故答案为:5(a+3b)(a3b)【点睛】此题考查了运用提公因式法和平方差公式分解因式,正确掌握因式分解的方法是解题的关键5、【分析】利用十字相乘法分解因
12、式即可【详解】解:,故答案为:【点睛】本题考查了十字相乘法因式分解,解题关键是明确二次项系数为1的十字相乘法公式:三、解答题1、(1)11x-3;(2)ab(a-b)2【分析】(1)先按照多项式乘以多项式的法则,完全平方公式进行整式的乘法运算,再合并同类项即可;(2)先提取公因式 再按照完全平方公式分解因式即可.【详解】解:(1)(x+2)(4x1)(2x1)2 (2)a3b2a2b2+ab3 【点睛】本题考查的是整式的乘法运算,利用完全平方公式进行简便运算,同时考查综合提公因式与公式法分解因式,掌握“完全平方公式的应用”是解本题的关键.2、(1)a(x4)2 ;(2)x2(x9y)(x9y)
13、【分析】(1)先提取公因式 再利用完全平方公式分解因式即可;(2)先提取公因式 再利用平方差公式分解即可.【详解】解:(1)原式a(x28x16) a(x4)2 (2)原式x2(x281y2) x2(x9y)(x9y)【点睛】本题考查的是综合提公因式与公式法分解因式,掌握“利用完全平方公式与平方差公式分解因式”是解本题的关键.3、(1)4xy(y+1)2;(2)-5(a-b)2【分析】(1)提公因式后利用完全平方公式分解即可;(2)提公因式后利用完全平方公式分解即可【详解】(1), ,4xy(y+1)2;(2), ,-5(a-b)2【点睛】本题考查了提公因式法与公式法的综合运用,一定要注意有公
14、因式先提公因式,然后再继续分解4、(1)-5;(2)28;(3);(4)a【分析】(1)根据=2, ,整理计算即可;(2)利用多项式的乘法法则,完全平方公式展开,合并同类项即可;(3)根据(y-x)=-(x-y),提取公因式后,套用平方差公式分解即可;(4) 先提取公因式a,后套用和的完全平方公式分解即可【详解】解:(1) =2+1-9+1-5;(2)(x2y)(3x+2y)3+2xy6xy4+4xy428;(3)9(xy)+4(yx)= =;(4)a+2x+a(+2ax+)a【点睛】本题考查了绝对值,零指数幂,负整数指数幂,完全平方公式,因式分解,熟练掌握零指数幂,负整数指数幂,完全平方公式和公式法分解因式是解题的关键5、(1);(2)【分析】(1)利用完全平方公式进行分解因式,即可解答;(2)把分解为,即可把原式转化为,再由提公因式法和十字相乘法进行因式分解即可【详解】(1)原式,;(2)原式,【点睛】本题考查了因式分解,解决本题的关键是熟记因式分解的方法