《2022年人教版八年级数学下册第十八章-平行四边形重点解析试题(含解析).docx》由会员分享,可在线阅读,更多相关《2022年人教版八年级数学下册第十八章-平行四边形重点解析试题(含解析).docx(29页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版八年级数学下册第十八章-平行四边形重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知在正方形ABCD中,厘米,点E在边AB上,且厘米,如果点P在线段BC上以2厘米/秒的速度由B点向C
2、点运动,同时,点Q在线段CD上以a厘米/秒的速度由C点向D点运动,设运动时间为t秒若存在a与t的值,使与全等时,则t的值为( )A2B2或1.5C2.5D2.5或22、如图,在四边形中,面积为21,的垂直平分线分别交于点,若点和点分别是线段和边上的动点,则的最小值为( )A5B6C7D83、若一个直角三角形的周长为,斜边上的中线长为1,则此直角三角形的面积为( )ABCD4、菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD,CD边上的中点,连接EF若EF,BD2,则菱形ABCD的面积为( )A2BC6D85、已知,四边形ABCD的对角线AC和BD相交于点O设有以下条件:ABAD;AC
3、BD;AOCO,BODO;四边形ABCD是矩形;四边形ABCD是菱形;四边形ABCD是正方形那么,下列推理不成立的是()ABCD6、平行四边形中,则的度数是( )ABCD7、如图,在平面直角坐标系中,点A是x轴正半轴上的一个动点,点C是y轴正半轴上的点,于点C已知,点B到原点的最大距离为( )A22B18C14D108、如图,矩形ABCD中,DEAC于E,若ADE2EDC,则BDE的度数为( )A36B30C27D189、在ABC中,AD是角平分线,点E、F分别是线段AC、CD的中点,若ABD、EFC的面积分别为21、7,则的值为( )ABCD10、在ABCD中,添加以下哪个条
4、件能判断其为菱形( )AABBCBBCCDCCDACDACBD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是_2、平面直角坐标系中,四边形ABCD的顶点坐标分别是A(3,0),B(0,2),C(3,0),D(0,2),则四边形ABCD是_3、如图,在ABC中,ACB90,以AC,BC和AB为边向上作正方形ACED和正方形BCMI和正方形ABGF,点G落在MI上,若AC+BC7,空白部分面积为16,则图中阴影部分的面积是 _4、如图,在ABC中,D,E分别是边AB,AC的中点,B50现将ADE沿DE折叠点A落
5、在三角形所在平面内的点为A1,则BDA1的度数为 _5、正方形的一条对角线长为4,则这个正方形面积是_三、解答题(5小题,每小题10分,共计50分)1、如图,四边形ABCD是一个菱形绿草地,其周长为40m,ABC120,在其内部有一个矩形花坛EFGH,其四个顶点恰好在菱形ABCD各边中点,现准备在花坛中种植茉莉花,其单价为30元/m2,则需投资资金多少元?( 取1.732)2、如图,四边形ABCD是平行四边形,BAC90(1)尺规作图:在BC上截取CE,使CECD,连接DE与AC交于点F,过点F作线段AD的垂线交AD于点M;(不写作法,保留作图痕迹)(2)在(1)的条件下,猜想线段FM和CF的
6、数量关系,并证明你的结论3、我们知道正多边形的定义是:各边相等,各角也相等的多边形叫做正多边形(1)如图,在各边相等的四边形ABCD中,当ACBD时,四边形ABCD 正四边形;(填“是”或“不是”)(2)如图,在各边相等的五边形ABCDE中,ACCEEBBDDA,求证:五边形ABCDE是正五边形;(3)如图,在各边相等的五边形ABCDE中,减少相等对角线的条数也能判定它是正五边形,问:至少需要几条对角线相等才能判定它是正五边形?请说明理由4、在平面直角坐标系xOy中,点A(x,m)在第四象限,A,B两点关于x轴对称,x+n(n为常数),点C在x轴正半轴上,(1)如图1,连接AB,直接写出AB的
7、长为 ;(2)延长AC至D,使CDAC,连接BD如图2,若OAAC,求线段OC与线段BD的关系;如图3,若OCAC,连接OD点P为线段OD上一点,且PBD45,求点P的横坐标5、如图,ABCD的对角线AC,BD相交于点O,点E,点F在线段BD上,且DEBF求证:AECF-参考答案-一、单选题1、D【解析】【分析】根据题意分两种情况讨论若BPECQP,则BP=CQ,BE=CP;若BPECPQ,则BP=CP=5厘米,BE=CQ=6厘米进行求解即可.【详解】解:当,即点Q的运动速度与点P的运动速度都是2厘米/秒,若BPECQP,则BP=CQ,BE=CP,AB=BC=10厘米,AE=4厘米,BE=CP
8、=6厘米,BP=10-6=4厘米,运动时间t=42=2(秒);当,即点Q的运动速度与点P的运动速度不相等,BPCQ,B=C=90,要使BPE与OQP全等,只要BP=PC=5厘米,CQ=BE=6厘米,即可点P,Q运动的时间t=(秒).综上t的值为2.5或2.故选:D【点睛】本题主要考查正方形的性质以及全等三角形的判定,解决问题的关键是掌握正方形的四条边都相等,四个角都是直角;两边及其夹角分别对应相等的两个三角形全等同时要注意分类思想的运用2、C【解析】【分析】连接AQ,过点D作,根据垂直平分线的性质得到,再根据计算即可;【详解】连接AQ,过点D作,面积为21,MN垂直平分AB,当AQ的值最小时,
9、的值最小,根据垂线段最短可知,当时,AQ的值最小,的值最小值为7;故选C【点睛】本题主要考查了四边形综合,垂直平分线的性质,准确分析计算是解题的关键3、B【解析】【分析】根据直角三角形斜边上中线的性质,可得斜边为2,然后利用两直角边之间的关系以及勾股定理求出两直角边之积,从而确定面积【详解】解:根据直角三角形斜边上中线的性质可知,斜边上的中线等于斜边的一半,得AC=2BD=2一个直角三角形的周长为3+,AB+BC=3+-2=1+等式两边平方得(AB+BC)2= (1+) 2,即AB2+BC2+2ABBC=4+2,AB2+BC2=AC2=4,2ABBC=2,ABBC=,即三角形的面积为ABBC=
10、故选:B【点睛】本题考查直角三角形斜边上的中线,勾股定理,三角形的面积等知识点的理解和掌握,巧妙求出ACBC的值是解此题的关键,值得学习应用4、A【解析】【分析】根据中位线定理可得对角线AC的长,再由菱形面积等于对角线乘积的一半可得答案【详解】解:E,F分别是AD,CD边上的中点,EF=,AC=2EF=2,又BD=2,菱形ABCD的面积S=ACBD=22=2,故选:A【点睛】本题主要考查菱形的性质与中位线定理,熟练掌握中位线定理和菱形面积公式是关键5、C【解析】【分析】根据已知条件以及正方形、菱形、矩形、平行四边形的判定条件,对选项进行分析判断即可【详解】解:A、可以说明,一组邻边相等的矩形是
11、正方形,故A正确B、可以说明四边形是平行四边形,再由,一组临边相等的平行四边形是菱形,故B正确C、,只能说明两组邻边分别相等,可能是菱形,但菱形不一定是正方形,故C错误D、可以说明四边形是平行四边形,再由可得:对角线相等的平行四边形为矩形,故D正确故选:C【点睛】本题主要是考查了特殊四边形的判定,熟练掌握各类四边形的判定条件,是解决本题的关键6、B【解析】【分析】根据平行四边形对角相等,即可求出的度数【详解】解:如图所示,四边形是平行四边形,故:B【点睛】本题考查了平行四边形的性质,解题的关键是掌握平行四边形的性质7、B【解析】【分析】首先取AC的中点E,连接BE,OE,OB,可求得OE与BE
12、的长,然后由三角形三边关系,求得点B到原点的最大距离【详解】解:取AC的中点E,连接BE,OE,OB,AOC90,AC16,OECEAC8,BCAC,BC6,BE10,若点O,E,B不在一条直线上,则OBOE+BE18若点O,E,B在一条直线上,则OBOE+BE18,当O,E,B三点在一条直线上时,OB取得最大值,最大值为18故选:B【点睛】此题考查了直角三角形斜边上的中线的性质以及三角形三边关系此题难度较大,注意掌握辅助线的作法,注意掌握数形结合思想的应用8、B【解析】【分析】根据已知条件可得以及的度数,然后求出各角的度数便可求出【详解】解:在矩形ABCD中,故选:B【点睛】题目主要考查矩形
13、的性质,三角形内角和及等腰三角形的性质,理解题意,综合运用各个性质是解题关键9、B【解析】【分析】过点A作ABC的高,设为x,过点E作EFC的高为,可求出,再由点E、F分别是线段AC、CD的中点,可得出,进而求出,再利用角平分线的性质可得出的值为即可求解【详解】解:过点A作ABC的高,设为x,过点E作EFC的高为, , , ,点E、F分别是线段AC、CD的中点, , , , ,过点D作DMAB,DNAC,AD为平分线,DM=DN,即: ,故选:B【点睛】本题考查角平分线性质定理及三角形中位线的性质,解题关键是求出10、D【解析】【分析】根据对角线互相垂直的平行四边形是菱形,结合选项找到对角线互
14、相垂直即可求解【详解】A、ABBC,ABC90,又四边形ABCD是平行四边形,四边形ABCD是矩形;故选项A不符合题意;B、C选项,同A选项一样,均为邻边垂直,ABCD是矩形;故选项B、C不符合题意;D、四边形ABCD是平行四边形,又ACBD,四边形ABCD是菱形;故选项D符合题意故选D【点睛】本题考查了菱形的判定,掌握菱形的判定定理是解题的关键二、填空题1、5【解析】【分析】直角三角形中,斜边长为斜边中线长的2倍,所以求斜边上中线的长求斜边长即可【详解】解:在直角三角形中,两直角边长分别为6和8,则斜边长10,斜边中线长为105,故答案为 5【点睛】本题考查了直角三角形斜边上的中线等于斜边的
15、一半,勾股定理,根据勾股定理求得斜边长是解题的关键2、菱形【解析】【分析】先在坐标系中画出四边形ABCD,由A、B、C、D的坐标即可得到OA=OC=3,OB=OD=2,再由ACBD,即可得到答案【详解】解:图象如图所示:A(-3,0)、B(0,2)、C(3,0)、D(0,-2),OA=OC=3,OB=OD=2,四边形ABCD为平行四边形,ACBD,四边形ABCD为菱形,故答案为:菱形【点睛】本题主要考查了菱形的判定,坐标与图形,解题的关键在于能够熟练掌握菱形的判定条件3、【解析】【分析】根据余角的性质得到,根据全等三角形的性质得到,推出,根据勾股定理得到,解方程组得到,接着由图可知空白部分为重
16、叠部分,阴影部分为非重叠部分,所以2倍的空白部分与阴影部分面积和等于三个正方形与三角形面积和结合即可得出结论依此即可求解【详解】解:如图,四边形是正方形,即,在中,阴影部分的面积和= 三个正方形面积+三角形面积-2倍空白部分面积=故答案为:【点睛】本题考查勾股定理的知识,有一定难度,解题关键是将勾股定理和正方形的面积公式进行灵活的结合和应用4、80【解析】【分析】由翻折的性质得ADEA1DE,由中位线的性质得DE/BC,由平行线的性质得ADEB50,即可解决问题【详解】解:由题意得:ADEA1DE;D、E分别是边AB、AC的中点,DE/BC,ADEBA1DE50,A1DA100,BDA1180
17、10080故答案为:80【点睛】本题主要考查了翻折变换及其应用问题;同时还考查了三角形的中位线定理等几何知识点熟练掌握各性质是解题的关键5、8【解析】【分析】正方形边长相等设为,对角线长已知,利用勾股定理求解边长的平方,即为正方形的面积【详解】解:设边长为,对角线为故答案为:【点睛】本题考察了正方形的性质以及勾股定理解题的关键在于求解正方形的边长三、解答题1、2598元【分析】根据菱形的性质,先求出菱形的一条对角线,由勾股定理求出另一条对角线的长,由三角形的中位线定理,求出矩形的两条边,再求出矩形的面积,最后求得投资资金【详解】连接BD,AD相交于点O,如图:四边形ABCD是一个菱形,ACBD
18、,ABC=120,A=60,ABD为等边三角形,菱形的周长为40m,菱形的边长为10m,BD10m,BO5m,在RtAOB中,m,AC2OAm,E、F、G、H分别是AB、BC、CD、DA的中点,EHBD 5m,EFAC5m,S矩形5550m2,则需投资资金5030=15001.7322598元【点睛】本题考查了二次根式的应用,勾股定理,菱形的性质,等边三角形的判定与性质,三角形的中位线平行于第三边并且等于第三边的一半,熟记各性质与定理是解题的关键2、(1)图形见解析;(2),证明见解析【分析】(1)以C为圆心CD长为半径画弧于BC交点即为E;连DE与AC交点即为F;过F作AD的垂直平分线与AD
19、交点即为M;(2)证明DF平分,再利用角平分线的性质判定即可【详解】(1)图形如下:(2),证明如下:由(1)可得:,CECD四边形ABCD是平行四边形ADBC,ABCD,即DF平分BAC90【点睛】本题考查了作图-复杂作图:解决此类题目的关键是熟悉基本几何图形的性质,结合几何图形的基本性质把复杂作图拆解成基本作图,逐步操作也考查了平行四边形的判定与性质3、(1)是;(2)见解析;(3)至少需要3条对角线相等才能判定它是正五边形,见解析【分析】(1)根据对角线相等的菱形是正方形,证明即可;(2)由SSS证明ABCBCDCDEDEAEAB得出ABC=BCD=CDE=DEA=EAB,即可得出结论;
20、(3)由SSS证明ABEBCADEC得出BAE=CBA=EDC,AEB=ABE=BAC=BCA=DCE=DEC,由SSS证明ACEBEC得出ACE=CEB,CEA=CAE=EBC=ECB,由四边形ABCE内角和为360得出ABC+ECB=180,证出ABCE,由平行线的性质得出ABE=BEC,BAC=ACE,证出BAE=3ABE,同理:CBA=D=AED=BCD=3ABE=BAE,即可得出结论;【详解】(1)解:结论:四边形ABCD是正四边形理由:ABBCCDDA,四边形ABCD是菱形,ACBD,四边形ABCD是正方形四边形ABCD是正四边形故答案为:是(2)证明:凸五边形ABCDE的各条边都
21、相等,ABBCCDDEEA,在ABC、BCD、CDE、DEA、EAB中,ABCBCDCDEDEAEAB(SSS),ABCBCDCDEDEAEAB,五边形ABCDE是正五边形;(3)解:结论:至少需要3条对角线相等才能判定它是正五边形若ACBECE,五边形ABCDE是正五边形,理由如下:在ABE、BCA和DEC中,ABEBCADEC(SSS),BAECBAEDC,AEBABEBACBCADCEDEC,在ACE和BEC中,ACEBEC(SSS),ACECEB,CEACAEEBCECB,四边形ABCE内角和为360,ABC+ECB180,ABCE,ABEBEC,BACACE,CAECEA2ABE,B
22、AE3ABE,同理:CBADAEDBCD3ABEBAE,五边形ABCDE是正五边形;【点睛】本题是四边形综合题目,考查了正多边形的判定、全等三角形的判定与性质、等腰三角形的性质、三角形内角和定理等知识;本题综合性强,有一定难度,证明三角形全等是解题的关键4、(1)6;(2)OCBD,OCBD;3【分析】(1)利用二次根式的被开方数是非负数,求出m3,判断出A,B两点坐标,可得结论;(2)结论:OCBD,OCBD连接AB交x轴于点T利用等腰三角形的三线合一的性质得出OC2CT,利用三角形中位线定理得出CTBD,BD2CT,由此即可得;连接AB交OC于点T,过点P作PHOC于H证明OTBPHO(A
23、AS),推出BTOH3,即可得出结论【详解】解:(1)由题意,m3,xn,A(n,3),A,B关于x轴对称,B(n,3),AB3(3)6,故答案为:6;(2)结论:OCBD,OCBD理由:如图,连接AB交x轴于点TA,B关于x轴对称,ABOC,ATTB,AOAC,OTCT(等腰三角形的三线合一),OC2CT,ACCD,ATTB,CTBD,BD2CT,OCBD,OCBD;如图,连接AB交OC于点T,过点作于点,ACOCCD,COAOAC,CODCDO,2OAC+2CDO180,OAC+CDO90,AOD90,A,B关于x轴对称,OTAB,OAOB,OBTOAT, COD+AOC90,AOC+OA
24、T90,OATCOD,OBTCOD,即OBTPOH,BDOC,PDBPOHOBT,ABD90,PBD45,ABP45,OBPOBT+ABPOBT+45,OPBPBD+PDB45+PDB,OBPOPB, OBPO,在和中,OTBPHO(AAS),BTOH3,故点P的横坐标为3【点睛】本题考查了坐标与轴对称变化、三角形中位线定理、等腰三角形的三线合一等知识点,较难的是题(2),通过作辅助线,构造全等三角形是解题关键5、见解析【分析】首先根据平行四边形的性质推出ADCB,ADBC,得到ADECBF,从而证明ADECBF,得到AEDCFB,即可证明结论【详解】证:四边形ABCD是平行四边形,ADCB,ADBC,ADECBF,在ADE和CBF中,ADECBF(SAS),AEDCFB,AECF【点睛】本题考查平行四边形的性质,以及全等三角形的判定与性质等,掌握平行四边形的基本性质,准确证明全等三角形并利用其性质是解题关键