《精品解析2022年最新人教版八年级数学下册第十八章-平行四边形重点解析试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《精品解析2022年最新人教版八年级数学下册第十八章-平行四边形重点解析试题(含详细解析).docx(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版八年级数学下册第十八章-平行四边形重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图所示,公路AC、BC互相垂直,点M为公路AB的中点,为测量湖泊两侧C、M两点间的距离,若测得AB的长为6
2、km,则M、C两点间的距离为()A2.5kmB4.5kmC5kmD3km2、如图,点E是ABC内一点,AEB90,D是边AB的中点,延长线段DE交边BC于点F,点F是边BC的中点若AB6,EF1,则线段AC的长为()A7BC8D93、如图,把一张长方形纸片ABCD沿AF折叠,使B点落在处,若,要使,则的度数应为( )A20B55C45D604、如图,在ABCD中,AD=2AB,F是AD的中点,作CEAB于E,在线段AB上,连接EF、CF则下列结论:BCD=2DCF;ECF=CEF;SBEC=2SCEF;DFE=3AEF,其中一定正确的是( )ABCD5、如图,在菱形中,P是对角线上一动点,过点
3、P作于点E于点F若菱形的周长为24,面积为24,则的值为( )A4BC6D6、如图,矩形ABCD中,DEAC于E,若ADE2EDC,则BDE的度数为( )A36B30C27D187、如图,已知正方形ABCD的边长为6,点E,F分别在边AB,BC上,BECF2,CE与DF交于点H,点G为DE的中点,连接GH,则GH的长为()ABC4.5D4.38、直角三角形中,两直角边长分别是12和5,则斜边上的中线长是( )A2.5B6C6.5D139、如图,在四边形中,ABCD,添加下列一个条件后,一定能判定四边形是平行四边形的是( )ABCD10、菱形ABCD的对角线AC,BD相交于点O,E,F分别是AD
4、,CD边上的中点,连接EF若EF,BD2,则菱形ABCD的面积为( )A2BC6D8第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,正方形ABCD中,BD为对角线,且BE为ABD的角平分线,并交CD延长线于点E,则E_2、已知如图,点E,F分别在正方形的边,上,若,则_ 3、如图,在ABC中,ACB90,以AC,BC和AB为边向上作正方形ACED和正方形BCMI和正方形ABGF,点G落在MI上,若AC+BC7,空白部分面积为16,则图中阴影部分的面积是 _4、如图所示,正方形ABCD的面积为6,CDE是等边三角形,点E在正方形ABCD内,在对角线BD上有一动点K,
5、则KA+KE的最小值为 _5、如图,在长方形ABCD中,在DC上找一点E,沿直线AE把折叠,使D点恰好落在BC上,设这一点为F,若的面积是54,则的面积=_三、解答题(5小题,每小题10分,共计50分)1、如图,已知ABC中,D是AB上一点,ADAC,AECD,垂足是E,F是BC的中点,求证:BD2EF2、如图,中,对角线AC、BD相交于点O,点 E, F,G,H分别是OA、OB、OC、OD的中点,顺次连接EFGH(1)求证:四边形EFGH 是平行四边形(2)若的周长为2(AB+BC)=32,则四边形EFGH的周长为_3、如图1,在平面直角坐标系中,且;(1)试说明是等腰三角形;(2)已知写出
6、各点的坐标:A( , ),B( , ),C( , )(3)在(2)的条件下,若一动点M从点B出发沿线段BA向点A运动,同时动点N从点A出发以相同速度沿线段AC向点C运动,当其中一点到达终点时整个运动都停止若的一条边与BC平行,求此时点M的坐标;若点E是边AC的中点,在点M运动的过程中,能否成为等腰三角形?若能,求出此时点的坐标;若不能,请说明理由4、如图,在四边形ABCD中,ABCADC90,E是AC的中点,连接BD,ED,EB求证:125、如图,在正方形ABCD中,DFAE,AE与DF相交于点O(1)求证:DAFABE;(2)求AOD的度数-参考答案-一、单选题1、D【解析】【详解】根据直角
7、三角形斜边上的中线性质得出CMAB,即可求出CM【解答】解:公路AC,BC互相垂直,ACB90,M为AB的中点,CMAB,AB6km,CM3km,即M,C两点间的距离为3km,故选:D【点睛】本题考查了直角三角形的性质,解题关键是掌握直角三角形斜边上的中线的性质:直角三角形斜边上的中线等于斜边的一半2、C【解析】【分析】根据直角三角形的性质求出DE,由EF=1,得到DF,再根据三角形中位线定理即可求出线段AC的长【详解】解:AEB90,D是边AB的中点,AB6,DEAB3,EF1,DFDE+EF3+14D是边AB的中点,点F是边BC的中点,DF是ABC的中位线,AC2DF8故选:C【点睛】本题
8、考查了直角三角形斜边上的中线等于斜边的一半的性质,三角形中位线定理,求出DF的长是解题的关键3、B【解析】【分析】设直线AF与BD的交点为G,由题意易得,则有,由折叠的性质可知,由平行线的性质可得,然后可得,进而问题可求解【详解】解:设直线AF与BD的交点为G,如图所示:四边形ABCD是矩形,由折叠的性质可知,;故选B【点睛】本题主要考查折叠的性质及矩形的性质,熟练掌握折叠的性质及矩形的性质是解题的关键4、B【解析】【分析】根据易得DF=CD,由平行四边形的性质ADBC即可对作出判断;延长EF,交CD延长线于M,可证明AEFDMF,可得EF=FM,由直角三角形斜边上中线的性质即可对作出判断;由
9、AEFDMF可得这两个三角形的面积相等,再由MCBE易得SBEC2SEFC ,从而是错误的;设FEC=x,由已知及三角形内角和可分别计算出DFE及AEF,从而可判断正确与否【详解】F是AD的中点,AF=FD,在ABCD中,AD=2AB,AF=FD=CD,DFC=DCF,ADBC,DFC=FCB,DCF=BCF,BCD=2DCF,故正确;延长EF,交CD延长线于M,四边形ABCD是平行四边形,ABCD,A=MDF,F为AD中点,AF=FD,在AEF和DFM中, ,AEFDMF(ASA),FE=MF,AEF=M,CEAB,AEC=90,AEC=ECD=90, FM=EF,FC=FE,ECF=CEF
10、,故正确;EF=FM,SEFC=SCFM , MCBE,SBEC2SEFC , 故SBEC=2SCEF , 故错误; 设FEC=x,则FCE=x,DCF=DFC=90x,EFC=1802x,EFD=90x+1802x=2703x,AEF=90x,DFE=3AEF,故正确,故选:B 【点睛】本题考查了平行四边形的性质,全等三角形的判定与性质,直角三角形斜边上中线的性质,三角形的面积等知识,构造辅助线证明三角形全等是本题的关键和难点5、A【解析】【分析】连接BP,通过菱形的周长为24,求出边长,菱形面积为24,求出的面积,然后利用面积法,即可求出的值【详解】解:如图所示,连接BP,菱形ABCD的周
11、长为24,又菱形ABCD的面积为24, ,故选:A【点睛】本题主要考查菱形的性质,解题关键在于添加辅助线,通过面积法得出等量关系6、B【解析】【分析】根据已知条件可得以及的度数,然后求出各角的度数便可求出【详解】解:在矩形ABCD中,故选:B【点睛】题目主要考查矩形的性质,三角形内角和及等腰三角形的性质,理解题意,综合运用各个性质是解题关键7、A【解析】【分析】根据正方形的四条边都相等可得BCDC,每一个角都是直角可得BDCF90,然后利用“边角边”证明CBEDCF,得BCECDF,进一步得DHCDHE90,从而知GHDE,利用勾股定理求出DE的长即可得出答案【详解】解:四边形ABCD为正方形
12、,BDCF90,BCDC,在CBE和DCF中,CBEDCF(SAS),BCECDF,BCE+DCH90,CDF+DCH90,DHCDHE90,点G为DE的中点,GHDE,ADAB6,AEABBE624,GH故选A【点睛】本题主要考查了正方形的性质,全等三角形的性质与判定,勾股定理,直角三角形斜边上的中线,解题的关键在于能够熟练掌握相关知识进行求解8、C【解析】【分析】利用勾股定理列式求出斜边,再根据直角三角形斜边上的中线等于斜边的一半解答【详解】解:由勾股定理得,斜边,所以,斜边上的中线长故选:C【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半的性质,勾股定理,解题的关键是熟记性质9、C
13、【解析】【分析】由平行线的性质得,再由,得,证出,即可得出结论【详解】解:一定能判定四边形是平行四边形的是,理由如下:,又,四边形是平行四边形,故选:C【点睛】本题考查了平行四边形的判定,解题的关键是熟练掌握平行四边形的判定,证明出10、A【解析】【分析】根据中位线定理可得对角线AC的长,再由菱形面积等于对角线乘积的一半可得答案【详解】解:E,F分别是AD,CD边上的中点,EF=,AC=2EF=2,又BD=2,菱形ABCD的面积S=ACBD=22=2,故选:A【点睛】本题主要考查菱形的性质与中位线定理,熟练掌握中位线定理和菱形面积公式是关键二、填空题1、22.5【解析】【分析】由平行线的性质可
14、知,由角平分线的定义得,进而可求E的度数【详解】解:为正方形,平分,又,故答案为:22.5【点睛】本题考查了正方形的性质,平行线的性质,角平分线的定义,熟练掌握正方形的性质是解答本题的关键2、14【解析】【分析】过点作的垂线,交延长线于点,先根据正方形的性质、三角形全等的判定定理证出,根据全等三角形的性质可得,再根据三角形全等的判定定理证出,根据全等三角形的性质即可得出答案【详解】解:如图,过点作的垂线,交延长线于点,四边形是正方形,在和中,又,在和中,故答案为:14【点睛】本题考查了正方形的性质、三角形全等的判定定理与性质等知识点,通过作辅助线,构造全等三角形是解题关键3、【解析】【分析】根
15、据余角的性质得到,根据全等三角形的性质得到,推出,根据勾股定理得到,解方程组得到,接着由图可知空白部分为重叠部分,阴影部分为非重叠部分,所以2倍的空白部分与阴影部分面积和等于三个正方形与三角形面积和结合即可得出结论依此即可求解【详解】解:如图,四边形是正方形,即,在中,阴影部分的面积和= 三个正方形面积+三角形面积-2倍空白部分面积=故答案为:【点睛】本题考查勾股定理的知识,有一定难度,解题关键是将勾股定理和正方形的面积公式进行灵活的结合和应用4、【解析】【分析】根据正方形的性质可知C、A关于BD对称,推出CKAK,推出EK+AKCE,根据等边三角形性质推出CECD,根据正方形面积公式求出CD
16、即可【详解】解:四边形ABCD是正方形,C、A关于BD对称,即C关于BD的对称点是A,如图,连接CK,则CKAK,EK+CKCE,CDE是等边三角形,CECD,正方形ABCD的面积为6,CD,KA+KE的最小值为,故答案为:【点睛】本题考查了正方形的性质,轴对称-最短路径问题,等边三角形的性质等知识点的应用,解此题的关键是确定K的位置和求出KA+KE的最小值是CE5、6【解析】【分析】根据三角形的面积求出BF,利用勾股定理列式求出AF,再根据翻折变换的性质可得AD=AF,然后求出CF,设DE=x,表示出EF、EC,然后在RtCEF中,利用勾股定理列方程求解和三角形的面积公式解答即可【详解】解:
17、四边形ABCD是矩形AB=CD=9,BC=ADABBF54,BF=12 在RtABF中,AB=9,BF=12,由勾股定理得, BC=AD=AF=15,CF=BC-BF=15-12=3设DE=x,则CE=9-x,EF=DE=x则x2=(9-x)2+32,解得,x=5DE=5 EC=DC-DE=9-5=4 FCE的面积=43=6【点睛】本题考查了翻折变换的性质,矩形的性质,三角形的面积,勾股定理,熟记各性质并利用勾股定理列出方程是解题的关键三、解答题1、见解析【分析】先证明 再证明EF是CDB的中位线,从而可得结论.【详解】证明:ADAC,AECDCEEDF是BC的中点EF是CDB的中位线BD2E
18、F【点睛】本题考查的是等腰三角形的性质,三角形的中位线的性质,掌握“三角形的中位线平行于第三边且等于第三边的一半”是解题的关键.2、(1)见解析;(2)16【分析】(1)根据平行四边形的性质,可得OA=OC,OB=OD,从而得到OE=OG,OF=OH,即可求证;(2)根据三角形中位线定理,可得,从而得到 ,再由(1)四边形EFGH是平行四边形,即可求解【详解】(1)证明:四边形ABCD是平行四边形,OA=OC,OB=OD,点 E、 F、G、H分别是OA、OB、OC、OD的中点,OE=OG,OF=OH,四边形EFGH是平行四边形;(2)点 E、 F、G、H分别是OA、OB、OC、OD的中点, ,
19、的周长为2(AB+BC)=32, , ,由(1)知:四边形EFGH是平行四边形,四边形EFGH的周长为 【点睛】本题主要考查了平行四边形的判定和性质,三角形的中位线定理,熟练掌握平行四边形的判定和性质定理,三角形的中位线定理是解题的关键3、(1)见解析;(2)12,0;-8,0;0,16;(3)当M的坐标为(2,0)或(4,0)时,OMN的一条边与BC平行;当M的坐标为(0,10)或(12,0)或(,0)时,MOE是等腰三角形【分析】(1)设,则,由勾股定理求出,即可得出结论;(2)由的面积求出m的值,从而得到、的长,即可得到A、B、C的坐标;(3)分当时,;当时,;得出方程,解方程即可;由直
20、角三角形的性质得出,根据题意得出为等腰三角形,有3种可能:如果;如果;如果;分别得出方程,解方程即可【详解】解:(1)证明:设,则,在中,是等腰三角形;(2),A点坐标为(12,0),B点坐标为(-8,0),C点坐标为(0,16),故答案为:12,0;-8,0;0,16;(3)如图3-1所示,当MNBC时,AB=AC,ABC=ACB,MNBC,AMN=ABC,ANM=ACB,AMN=ANM,AM=AN,AM=BM,M为AB的中点,点M的坐标为(2,0);如图3-2所示,当ONBC时,同理可得,M点的坐标为(4,0);综上所述,当M的坐标为(2,0)或(4,0)时,OMN的一条边与BC平行;如图
21、3-3所示,当OM=OE时,E是AC的中点,AOC=90,此时M的坐标为(0,10);如图3-4所示,当时,此时M点与A点重合,M点的坐标为(12,0);如图3-5所示,当OM=ME时,过点E作EFx轴于F,OE=AE,EFOA,设,则,解得,M点的坐标为(,0);综上所述,当M的坐标为(0,10)或(12,0)或(,0)时,MOE是等腰三角形【点睛】本题主要考查了坐标与图形,勾股定理,等腰三角形的性质与判定,直角三角形斜边上的直线,三角形面积等等,解题的关键在于能够利用数形结合和分类讨论的思想求解4、见解析【分析】根据直角三角形斜边上的中线等于斜边的一半和等腰三角形的性质即可证明【详解】解:
22、ABCADC90,ABC和ADC是直角三角形,点E是AC的中点,EBAC,EDAC,EBED,12【点睛】本题考查了直角三角形斜边上的中线、等腰三角形的判定与性质,解决本题的关键是掌握直角三角形斜边上的中线等于斜边的一半5、(1)见解析;(2)90【分析】(1)利用正方形的性质得出AD=AB,DAB=ABC=90,再证明RtDAFRtABE即可得出结论;(2)利用(1)的结论得出ADF=BAE,进而求出BAE+DFA=90,最后用三角形的内角和定理即可得出结论【详解】(1)证明:四边形ABCD是正方形,DABABC90,ADAB,在RtDAF和RtABE中,RtDAFRtABE(HL),即DAFABE(2)解:由(1)知,DAFABE,ADFBAE,ADF+DFABAE+DFADAB90,AOD180(BAE+DFA)90【点睛】本题主要考查了正方形的性质,全等三角形的判定和性质,三角形的内角和定理,判断出RtDAFRtABE是解本题的关键