《2022年强化训练京改版九年级数学下册第二十三章-图形的变换重点解析试题(名师精选).docx》由会员分享,可在线阅读,更多相关《2022年强化训练京改版九年级数学下册第二十三章-图形的变换重点解析试题(名师精选).docx(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、九年级数学下册第二十三章 图形的变换重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,是由ABO平移得到的,点A的坐标为(-1,2),它的对应点的坐标为(3,4),ABO内任意点P(a,b)平
2、移后的对应点的坐标为( )A(a,b)B(-a,-b)C(a+2,b+4)D(a+4,b+2)2、如图,等边中,D为AC中点,点P、Q分别为AB、AD上的点,在BD上有一动点E,则的最小值为( )A7B8C10D123、如图,绕点逆时针旋转到的位置,已知,则等于( )ABCD4、下列四个标志中,是轴对称图形的是( )ABCD5、如图,与位似,位似中心为点,的周长为9,则周长为( )AB6C4D6、如图在ABC外任取一点O,连接AO、BO、CO,并取它们的中点D、E、F,得到DEF,则下列说法正确的个数是()ABC与DEF是位似图形;ABC与DEF是相似图形;ABC与DEF的周长比为1:2;AB
3、C与DEF的面积比为4:1A1个B2个C3个D4个7、如图,在中,将绕点顺时针旋转得到,当点的对应点恰好落在边上时,的长为( )A3B4C5D68、如图,在平面直角坐标系中,点A的坐标为,沿x轴向右平移后得到,A点的对应点在直线上,则点与其对应点之间的距离为( )A4B6C8D109、下列交通标志中既是中心对称图形,又是轴对称图形的是( )ABCD10、在平面直角坐标系中,点关于x轴对称的点的坐标是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,平面直角坐标系中,是边长为2的等边三角形,作与关于点成中心对称,再作与于点成中心对称,如此作下去,则的顶点
4、的坐标是_2、已知正方形ABCD中,AB2,A是以A为圆心,1为半径的圆,若A绕点B顺时针旋转,旋转角为(0180),则当旋转后的圆与正方形ABCD的边相切时,_3、如图,P是OA上一点,P与关于OB对称,作于点M,则_4、已知点A(a,1)与点B(3,b)关于x轴对称,则ab_5、如图,P是正方形ABCD内一点,将绕点B顺时针方向旋转,能与重合,若,则_三、解答题(5小题,每小题10分,共计50分)1、如图,长方形纸片ABCD,点E,F,C分别在边AD,AB,CD上将AEF沿折痕EF翻折,点A落在点A处;将DEG沿折痕EG翻折,点D落在点D处(1)如图1,若AEF40,DEG35,求AED的
5、度数;(2)如图1,若AED,求FEG的度数(用含的式子表示);(3)如图2,若AED,求FEG的度数(用含的式子表示)2、问题背景如图(1),ABC为等腰直角三角形,BAC90,直线l绕着点A顺时针旋转,过B,C两点分别向直线l作垂线BD,CE,垂足为D,E,此时ABD可以由CAE通过旋转变换得到,请写出旋转中心、旋转方向及旋转角的大小(取最小旋转角度)尝试应用如图(2),ABC为等边三角形,直线l绕着点A顺时针旋转,D、E为直线l上两点,BDAAEC60ABD可以由CAE通过旋转变换得到吗?若可以,请指出旋转中心O的位置并说明理由;拓展创新如图(3)在问题背景的条件下,若AB2,连接DC,
6、直接写出CD的长的取值范围3、如图,在边长为1个单位长度的小正方形组成的网格中,ABC的顶点A、B、C在小正方形的顶点上,将ABC向右平移3单位,再向上平移2个单位得到三角形A1B1C1(1)在网格中画出三角形A1B1C1(2)A1B1与AB的位置关系 4、在平面直角坐标系xOy中,点P为一定点,点P和图形W的“旋转中点”定义如下:点Q是图形W上任意一点,将点Q绕原点顺时针旋转90,得到点,点M为线段的中点,则称点M为点P关于图形W的“旋转中点”(1)如图1,已知点,在点,中,点 是点A关于线段BC的“旋转中点”;求点A关于线段BC的“旋转中点”的横坐标m的取值范围;(2)已知,点,且D的半径
7、为2若的内部(不包括边界)存在点G关于D的“旋转中点”,求出t的取值范围5、如图,一次函数yx+3的图象与x轴和y轴分别交于点A和点B,将AOB沿直线CD对折,使点A与点B重合,直线CD与x轴交于点C,与AB交于点D(1)点A的坐标为 ,点B的坐标为 ;(2)求OC的长度;(3)在x轴上有一点P,且PAB是等腰三角形,不需计算过程,直接写出点P的坐标-参考答案-一、单选题1、D【分析】根据点A的坐标和点的坐标确定平移规律,即可求出点P(a,b)平移后的对应点的坐标【详解】解:ABO是由ABO平移得到的,点A的坐标为(-1,2),它的对应点A的坐标为(3,4),ABO平移的规律是:先向右移4个单
8、位长度,再向上平移2个单位长度,ABO内任意点P(a,b)平移后的对应点P的坐标为(a+4,b+2)故选:D【点睛】此题考查了平面直角坐标系中点的平移规律,解题的关键是熟练掌握平面直角坐标系中点的平移规律点向左平移,点的横坐标减小,纵坐标不变;向右平移,点的横坐标增大,纵坐标不变;点向上平移,点的横坐标不变,纵坐标增大;向下平移,点的横坐标不变,纵坐标减小2、C【分析】作点关于的对称点,连接交于,连接,此时的值最小,最小值,据此求解即可【详解】解:如图,是等边三角形,D为AC中点,作点关于的对称点,连接交于,连接,此时的值最小最小值,是等边三角形,的最小值为故选:C【点睛】本题考查等边三角形的
9、性质和判定,轴对称最短问题等知识,解题的关键是学会利用轴对称解决最短问题,属于中考常考题型3、D【分析】根据题意找到旋转角,根据即可求解【详解】解:绕点逆时针旋转到的位置,故选D【点睛】本题考查了旋转的性质,几何图形中角度的计算,找到旋转角是解题的关键4、D【分析】利用轴对称图形的定义进行解答即可【详解】解:A、不是轴对称图形,故此选项不合题意;B、不是轴对称图形,故此选项不符合题意;C、不是轴对称图形,故此选项不合题意;D、是轴对称图形,故此选项符合题意;故选:D【点睛】此题主要考查了轴对称图形,关键是掌握如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形5、B【
10、分析】根据与位似,得出,根据相似三角形性质得出,再证得出即可【详解】解:与位似,即故选择B【点睛】本题考查位似三角形的性质,相似三角形判定与性质,掌握位似三角形的性质,相似三角形判定与性质是解题关键6、C【分析】由题意根据位似图形的性质,得出ABC与DEF是位似图形进而根据位似图形一定是相似图形得出 ABC与DEF是相似图形,再根据周长比等于位似比,以及根据面积比等于相似比的平方,即可得出答案【详解】解:根据位似的定义可得,与是位似图形,也就是特殊的相似图形,故正确;点D、E、F分别是、的中点,与的位似比为21,周长比为21,面积比为41,故错误,正确故选:C【点睛】本题主要考查位似图形的性质
11、,熟练掌握位似图形的性质是解决问题的关键7、A【分析】先根据旋转的性质可得,再根据等边三角形的判定与性质可得,然后根据线段的和差即可得【详解】由旋转的性质得:,是等边三角形,故选:A【点睛】本题考查了旋转的性质、等边三角形的判定与性质等知识点,熟练掌握旋转的性质是解题关键8、D【分析】先根据平移的特点可知所求的距离为,且,点纵坐标与点A纵坐标相等,再将其代入直线求出点横坐标,从而可知的长,即可得出答案【详解】解:A(0,6)沿x轴向右平移后得到,点的纵坐标为6,令,代入直线得,的坐标为(10,6),由平移的性质可得,故选D【点睛】本题考查了平移的性质、一次函数图像上点的坐标特点,掌握理解平移的
12、性质是解题关键9、C【分析】结合选项根据轴对称图形(把一个图形沿着某一条直线折叠,如果它能够与另一个图形完全重合,称这两个图形为轴对称)与中心对称图形(指把一个图形绕着某一点旋转,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称)的概念求解即可【详解】解:A、是轴对称图形,不是中心对称图形;B、是轴对称图形,不是中心对称图形;C、是轴对称图形,也是中心对称图形;D、不是轴对称图形,也不是中心对称图形故选:C【点睛】题目主要考查轴对称和中心对称图形的识别,深刻理解轴对称与中心对称图形的概念是解题关键10、C【分析】根据若两点关于 轴对称,横坐标不变,纵坐标互为相反数,即可求
13、解【详解】解:点关于x轴对称的点的坐标是 故选:C【点睛】本题主要考查了平面直角坐标系内点关于坐标轴对称的特征,熟练掌握若两点关于 轴对称,横坐标不变,纵坐标互为相反数;若两点关于y轴对称,横坐标互为相反数,纵坐标不变是解题的关键二、填空题1、【分析】首先根据是边长为2的等边三角形,可得的坐标为,的坐标为;然后根据中心对称的性质,分别求出点、的坐标各是多少;最后总结出的坐标的规律,求出的坐标是多少即可【详解】解:是边长为2的等边三角形,的坐标为:,的坐标为:,与关于点成中心对称,点与点关于点成中心对称,点的坐标是:,与关于点成中心对称,点与点关于点成中心对称,点的坐标是:,与关于点成中心对称,
14、点与点关于点成中心对称,点的坐标是:,的横坐标是:,的横坐标是:,当为奇数时,的纵坐标是:,当为偶数时,的纵坐标是:,顶点的纵坐标是:,是正整数)的顶点的坐标是:,的顶点的横坐标是:,纵坐标是:,故答案为:【点睛】此题主要考查了中心对称的性质、坐标与图形性质、等边三角形的性质等知识;熟练掌握等边三角形的性质和中心对称的性质,分别判断出的横坐标和纵坐标是解题的关键2、30,60或120【分析】根据题意得,可分三种情况讨论:当旋转后的圆A与正方形ABCD的边AB相切时,与边CD也相切;当旋转后的圆与正方形ABCD的边AD相切时,与边BC也相切;当旋转后的圆 与正方形ABCD的边BC相切时,即可求解
15、【详解】正方形ABCD中AB=2,圆A是以A为圆心,1为半径的圆,当圆A绕点B顺时针旋转(0180)过程中,圆A与正方形ABCD的边相切时,可分三种情况讨论:如图1,当旋转后的圆A与正方形ABCD的边AB相切时,与边CD也相切,设圆 与正方形ABCD的边AB相切于点E,连接E,B,则在RtEB中,E=1,B=2, ,BE=30,即=30;如图2,当旋转后的圆与正方形ABCD的边AD相切时,与边BC也相切,设圆与正方形ABCD的边BC相切于点F,连接F,B,则 ,在 中, ,BF=30,=BA=ABC-BF =60;如图3,当旋转后的圆 与正方形ABCD的边BC相切时, 设切点为G,连接 ,则
16、,在 中, ,BG=30,=BA=ABC+BG=120综上,旋转角=30,60或120故答案为:30,60或120【点睛】本题主要考查了切线的性质,图形的旋转,解直角三角形,熟练掌握相关知识点,并利用分类讨论的思想解答是解题的关键3、2【分析】连接,根据对称的性质可得:,然后在中,利用角所对直角边是斜边的一半即可得【详解】解:连接,如图所示:P与关于OB对称,在中,故答案为:2【点睛】题目主要考查轴对称的性质,直角三角形中的性质等,理解题意,作出辅助线,结合这几个性质是解题关键4、2【分析】根据两点关于x轴对称得到a3,b1,代入计算即可【详解】解:点A(a,1)与点B(3,b)关于x轴对称,
17、a3,b1,ab2故答案为:2【点睛】此题考查了轴对称的性质关于x轴对称:关于x轴对称的两点的横坐标相等,纵坐标互为相反数,熟记性质是解题关键5、【分析】根据旋转角相等可得,进而勾股定理求解即可【详解】解:四边形是正方形将绕点B顺时针方向旋转,能与重合,故答案为:【点睛】本题考查了旋转的性质,勾股定理,求得旋转角相等且等于90是解题的关键三、解答题1、(1);(2);(3)【分析】(1)由折叠的性质,得到,然后由邻补角的定义,即可求出答案;(2)由折叠的性质,先求出,然后求出FEG的度数即可;(3)由折叠的性质,先求出,然后求出FEG的度数即可【详解】解:(1)将AEF沿折痕EF翻折,点A落在
18、点A处;将DEG沿折痕EG翻折,点D落在点D处,;(2)根据题意,则,;(3)根据题意,;【点睛】本题考查了折叠的性质,邻补角的定义,解题的关键是熟练掌握折叠的性质,正确得到,2、(1)旋转中心为BC边的中点O,旋转方向为逆时针,旋转角度为90;(2)可以,旋转中心为为等边ABC三边垂直平分线的交点O,理由见解析;(3)【分析】问题背景(1)根据等腰直角三角形的性质,以及旋转的性质确定即可;尝试应用(2)首先通过证明ABD和CAE全等说明点A和点B对应,点C和点A对应,从而作AB和AC的垂直平分线,其交点即为旋转中点;拓展创新(3)首先确定出D点的运动轨迹,然后结合点与圆的位置关系,分别讨论出
19、CD最长和最短时的情况,并结合勾股定理进行求解即可【详解】解:问题背景(1)如图所示,作AOBC,交BC于点O,由等腰直角三角形的性质可知:AOC=90,OA=OC,点A是由点C绕点O逆时针旋转90得到,同理可得,点B是由点A绕点O逆时针旋转90得到,点D是由点E绕点O逆时针旋转90得到,ABD可以由CAE通过旋转变换得到,旋转中心为BC边的中点O,旋转方向为逆时针,旋转角度为90;尝试应用(2)ABC为等边三角形,AB=AC,BAC=60,DAC=DAB+BAC=AEC+EAC,BAC=AEC=60,DAB=ECA,在ABD和CAE中,ABDCAE(AAS),ABD的A、B、D三点的对应点分
20、别为CAE的C、A、E三点,则AC、AB分别视作两组对应点的连线,此时,如图所示,作AC和AB的垂直平分线交于点O,ABC为等边三角形,由等边三角形的性质可知,OC=OA=OB,AOC=120,ABD可以由CAE通过旋转变换得到,旋转中心为为等边ABC三边垂直平分线的交点O;拓展创新(3)由(1)知,在直线l旋转的过程中,总有ADB=90,点D的运动轨迹为以AB为直径的圆,如图,取AB的中点P,连接CP,交P于点Q,则当点D在CP的延长线时,CD的长度最大,当点D与Q点重合时,CD的长度最小,即CQ的长度,AB=AC,AB=2,AP=1,AC=2,在RtAPC中,由圆的性质,PD=AP=1,P
21、D=PQ=1,CD的长的取值范围为:【点睛】本题主要考查旋转三要素的确定,以及旋转的性质,主要涉及等腰直角三角形和等边三角形的性质,全等三角形的判定与性质,以及动点最值问题,掌握旋转的性质,确定出动点的轨迹,熟练运用圆的相关知识点是解题关键3、(1)见解析;(2)平行【分析】(1)将ABC向右平移3个单位长度,再向上平移2个单位长度,画出即可;(2)根据平移的性质:对应线段平行且相等,即可得出答案【详解】解:(1)如图所示,A1B1C1即为所求(2)根据平移的性质:对应线段平行且相等,故答案为:平行【点睛】此题考查了作图平移、平移的性质,熟练掌握平移的有关性质是解题的关键4、(1)点为点A关于
22、线段的“旋转中点”;(2)t的取值范围或【分析】(1)分别假设点为点A关于线段的“旋转中点”,求出点(旋转之前的点),查看点是否在线段即可;设点A关于线段的“旋转中点”的坐标为,按照题意,逆向思维找到点,根据点在线段上,求解即可;(2)设旋转中点的坐标为,则应满足,找到点,线段的中点为,再将点逆时针旋转,得到点,点应该在使得点在的内部(不包括边界),求解即可【详解】解:(1)假设点为点A关于线段的“旋转中点”, ,则点为线段的中点,即,解得,即,将绕原点逆时针旋转得到点,可得点的坐标为,此时点在线段上,符合题意;假设点为点A关于线段的“旋转中点”, ,则点为线段的中点,即,解得,即,将绕原点逆
23、时针旋转得到点,可得点的坐标为,此时点不在线段上,不符合题意;假设点为点A关于线段的“旋转中点”, ,则点为线段的中点,即,解得,即,将绕原点逆时针旋转得到点,可得点的坐标为,此时点不在线段上,不符合题意;综上所得,点为点A关于线段的“旋转中点”,设点A关于线段的“旋转中点”的坐标为,则点为线段的中点,即,解得即,将逆时针旋转得到点,可得点的坐标为,由题意可知点在线段上,即,解得;(2)设的内部(不包括边界)存在点G关于D的“旋转中点”,为,则点为线段的中点,即,解得即,将逆时针旋转得到点,可得点的坐标为,由题意可知点在D上, 即,解得,02n+t2或-22n+t0,或,设EF解析式为把坐标代
24、入得,解得,EF解析式为,由题意可得:点在的内部(不包括边界),0n2,又,解得, ,t的取值范围或【点睛】此题考查了坐标系点坐标的旋转变换,涉及了不等式组的求解,新概念的理解,解题的关键是理解点P和图形W“旋转中点”的概念,并掌握点绕原点顺时针或逆时针旋转后的坐标公式绕原点旋转的坐标公式:点绕原点顺时针转后坐标为,逆时针转旋转坐标为5、(1),;(2);(3)或或或【分析】(1)求出当时的值可得点的坐标,求出当时的值可得点的坐标;(2)先根据点的坐标可得的长,再根据折叠的性质可得,设,从而可得的长,然后在中,利用勾股定理即可得;(3)设点的坐标为,根据等腰三角形的定义分,三种情况,再利用两点之间的距离公式建立方程,解方程即可得【详解】解:(1)对应一次函数,当时,解得,即,当时,即,故答案为:,;(2),由折叠的性质得:,设,则,在中,即,解得,即的长度为;(3)设点的坐标为,则,根据等腰三角形的定义,分以下三种情况:当时,是等腰三角形,则,解得,此时点的坐标为或(与点重合,不符题意,舍去);当时,是等腰三角形,则,解得或,此时点的坐标为或;当时,是等腰三角形,则,解得,此时点的坐标为;综上,点的坐标为或或或【点睛】本题考查了一次函数、折叠的性质、等腰三角形的定义等知识点,较难的是题(3),正确分三种情况讨论是解题关键