《2022年京改版七年级数学下册第八章因式分解定向测试试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《2022年京改版七年级数学下册第八章因式分解定向测试试题(含详细解析).docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版七年级数学下册第八章因式分解定向测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列各式从左到右的变形是因式分解的是( )Aaxbxc(ab)xcB(ab)(ab)a2b2C(ab)2a22ab
2、b2Da25a6(a6)(a1)2、下列多项式中,能用平方差公式分解因式的是( )Aa2-1B-a2-1Ca2+1Da2+a3、下列等式中,从左到右的变形是因式分解的是( )ABCD4、多项式与的公因式是( )ABCD5、下列因式分解正确的是( )ABCD6、下列各式的因式分解中正确的是( )ABCD7、若,则E是( )ABCD8、下列各式中从左到右的变形中,是因式分解的是( )ABCD9、下列因式分解错误的是( )A3x3y3(xy)Bx24(x2)(x2)Cx26x9(x9)2Dx2x2(x1)(x2)10、下列各式能用完全平方公式进行因式分解的是( )A9x2-6x+1Bx2+x+1Cx
3、2+2x-1Dx2-9第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、因式分解:_2、若x+y=2,xy=-3,则x2y+xy2的值为_3、分解因式:_4、分解因式:5x45x2_5、分解因式:_三、解答题(5小题,每小题10分,共计50分)1、请将下列各式因式分解(1)3a(xy)5b(yx); (2)x2(ab)2y2(ba)2(3)2xmyn14xm1yn(m,n均为大于1的整数)2、因式分解(1)(2)(x1)(x3)83、因式分解:(1) (2)4、仔细阅读下面例题,解答问题:例题:已知:二次三项式x24x+m有一个因式是(x+3),求另一个因式以及m的值解:
4、设另一个因式为(x+n),得x24x+m(x+3)(x+n),则x24x+mx2+(n+3)x+3n解得:n7,m21另一个因式为(x7),m的值为21问题:仿照以上方法解答下面问题:已知二次三项式2x2+3xk有一个因式是(x5),求另一个因式以及k的值5、分解因式:-参考答案-一、单选题1、D【解析】【分析】根据因式分解的定义对各选项进行逐一分析即可【详解】解:A、axbxc(ab)xc,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;B、(ab)(ab)a2b2,等式的右边不是几个整式的积,不是因式分解,故此选项不符合题意;C、(ab)2a22abb2,等式的右边不是几个整
5、式的积,不是因式分解,故此选项不符合题意;D、a25a6(a6)(a1),等式的右边是几个整式的积的形式,故是因式分解,故此选项符合题意;故选:D【点睛】本题考查了分解因式的定义解题的关键是掌握分解因式的定义,即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式2、A【解析】【分析】直接利用平方差公式:,分别判断得出答案;【详解】A、a2-1=(a+1)(a-1),正确; B、-a2-1=-( a2+1 ),错误; C、 a2+1,不能分解因式,错误; D、 a2+a=a(a+1),错误; 故答案为:A【点睛】本题主要考查了公式法分解因式,正确运用平方差公式是
6、解题的关键3、C【解析】【分析】根据因式分解的定义(把一个多项式化成几个最简整式的乘积的形式,这种多项式的变形叫做因式分解)逐项判断即可得【详解】解:A、,则原等式不成立,此项不符题意;B、等式的右边不是乘积的形式,则此项不符题意;C、是因式分解,此项符合题意;D、等式右边中的不是整式,则此项不符题意;故选:C【点睛】本题考查了因式分解的定义,熟记定义是解题关键4、B【解析】【分析】先利用平方差公式、完全平方公式对两个多项式进行因式分解,再根据公因式的定义即可得【详解】解:,则多项式与的公因式是,故选:B【点睛】本题考查了利用公式法进行因式分解、公因式,熟练掌握因式分解的方法是解题关键5、C【
7、解析】【分析】根据完全平方公式和平方差公式以及提公因式法分解因式对各选项分析判断后利用排除法求解【详解】解:A、,故本选项错误;B、,故本选项错误;C、,故本选项正确;D、,故本选项错误故选:C【点睛】本题考查了公式法分解因式,提公因式法分解因式,熟记公式结构是解题的关键,分解因式要彻底6、D【解析】【分析】根据提公因式法,先提取各个多项式中的公因式,再对余下的多项式进行观察,能分解的继续分解【详解】A a2+abac=a(a-b+c) ,故本选项错误;B 9xyz6x2y2=3xy(3z2xy),故本选项错误;C 3a2x6bx+3x=3x(a22b+1),故本选项错误; D ,故本选项正确
8、故选:D【点睛】本题考查提公因式法分解因式,准确确定公因式是求解的关键7、C【解析】【分析】观察等式的右边,提取的是,故可把变成,即左边【详解】解:,故选C【点睛】本题主要考查了利用提取公因式法分解因式,解题的关键在于能够熟练掌握提公因式法8、C【解析】【分析】由题意依据因式分解的定义即把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,结合选项进行判断即可【详解】解:A、,是整式的乘法,不是因式分解故A错误;B、,是整式不是因式分解;C、,是因式分解;D、右边不是整式的积的形式(含有分式),不是因式分解;故选:C【点睛】本题考查了因式分解的意义,注意因式分解后左边和右边是相
9、等的,不能凭空想象右边的式子9、C【解析】【分析】提取公因式判断A,根据平方差公式和完全平方公式分解因式判断B,C,D即可【详解】解:显然对于A,B,D正确,不乖合题意,对于C:右边左边,故C错误,符合题意;故选:C【点睛】本题考查了因式分解,熟练掌因式分解的方法是解题的关键10、A【解析】【分析】根据完全平方公式的特点:两项平方项的符号相同,另一项是两底数积的2倍,对各选项解析判断后利用排除法求解:【详解】A. 9x2-6x+1 ,故该选项正确,符合题意; B. x2+x+1,不符合完全平方公式法分解因式的式子特点,故选项不符合题意; C. x2+2x-1,不符合完全平方公式法分解因式的式子
10、特点,故选项不符合题意; D. x2-9,不符合完全平方公式法分解因式的式子特点,故选项不符合题意;故选A【点睛】此题主要考查了运用公式法分解因式,正确应用公式是解题关键二、填空题1、【解析】【分析】先提公因式,再利用平方差公式即可;【详解】故答案为:【点睛】本题考查提公因式法、公式法分解因式,掌握平方差公式的结构特征是正确应用的前提2、-6【解析】【分析】先提取公因式 再整体代入求值即可.【详解】解: x+y=2,xy=-3, 故答案为:【点睛】本题考查的是因式分解的应用,掌握“利用因式分解的方法求解代数式的值” 是解题的关键.3、【解析】【分析】用提公因式法即可分解因式【详解】故答案为:【
11、点睛】本题考查了提公因式法分解因式,因式分解的步骤一般是先考虑提公因式,其次考虑公式法另外因式分解要进行到再也不能分解为止4、5x2(x1)(x1)【解析】【分析】直接提取公因式5x2,进而利用平方差公式分解因式【详解】解:5x4-5x2=5x2(x2-1)=5x2(x+1)(x-1)故答案为:5x2(x+1)(x-1)【点睛】本题考查了提取公因式法、公式法分解因式,正确运用乘法公式是解题关键5、【解析】【分析】利用提取公因式法分解因式即可得答案【详解】,故答案为:【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键三、解答题1、(1)(xy)(3a+5b);(2)(ab)2(
12、x -y)(x +y);(3)【解析】【分析】(1)首先将3a(xy)5b(yx)变形为3a(xy)+5b(xy),然后利用提公因式法分解因式即可;(2)首先将x2(ab)2y2(ba)2变形为x2(ab)2y2(ab)2,然后利用提公因式法分解因式即可;(3)利用提公因式法分解因式即可求解;【详解】解:(1)3a(xy)5b(yx)3a(xy)+5b(xy)(xy)(3a+5b)(2)x2(ab)2y2(ba)2x2(ab)2y2(ab)2(ab)2(x2y2)(ab)2(x -y)(x +y)(3)2xmyn14xm1yn【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法
13、因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等2、(1)x2(a2-2y)2;(2)(x-5)(x+1)【解析】【分析】(1)先提取x2,再根据完全平方公式即可求解;(2)先化简,再根据十字相乘法即可求解【详解】解:(1)=x2(a4-4a2y+4y2)=x2(a2-2y)2(2)(x1)(x3)8=x2-4x+3-8=x2-4x-5=(x-5)(x+1)【点睛】此题主要考查因式分解,解题的关键是熟知因式分解的方法3、(1);(2)【解析】【分析】(1)先提取y,再利用完全平方公式即可求解 (2)先提取,再利用平方差公式即可求解【详解】(1)原式;(2)原式【点睛】此
14、题主要考查因式分解,解题的关键是熟知因式分解的方法4、另一个因式为(2x+13),k的值为65【解析】【分析】设另一个因式为(2x+a),根据题意列出等式,利用系数对应相等列出得到关于a和k的方程求解即可【详解】解:设另一个因式为(2x+a),得2x2+3xk(x5)(2x+a)则2x2+3xk2x2+(a10)x5a,解得:a13,k65故另一个因式为(2x+13),k的值为65【点睛】此题考查了因式分解和整式乘法的关系,解题的关键是根据题意设出另一个因式列出等式求解5、【解析】【分析】原式先变形为,再利用提公因式法分解【详解】解:原式=【点睛】本题考查因式分解的应用,熟练掌握因式分解的各种方法是解题关键