2021-2022学年浙教版初中数学七年级下册第四章因式分解章节测试试卷(精选).docx

上传人:知****量 文档编号:28175460 上传时间:2022-07-26 格式:DOCX 页数:20 大小:347.22KB
返回 下载 相关 举报
2021-2022学年浙教版初中数学七年级下册第四章因式分解章节测试试卷(精选).docx_第1页
第1页 / 共20页
2021-2022学年浙教版初中数学七年级下册第四章因式分解章节测试试卷(精选).docx_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《2021-2022学年浙教版初中数学七年级下册第四章因式分解章节测试试卷(精选).docx》由会员分享,可在线阅读,更多相关《2021-2022学年浙教版初中数学七年级下册第四章因式分解章节测试试卷(精选).docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、章节同步练习2022年浙教版初中数学 七年级下册知识点习题定向攻克含答案及详细解析第四章 因式分解浙教版初中数学七年级下册第四章因式分解章节测试(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下列分解因式正确的是()A.B.C.D.2、下列因式分解正确的是( )A.3p2-3q2=(3p+3q)(p-q)B.m4-1=(m2+1)(m2-1)C.2p+2q+1=2(p+q)+1D.m2-4m+4=(m-2)23、下列各式能用平方差公式分解因式的是( )A.B.C.D.4、下列等式中,从左到右

2、是因式分解的是( )A.B.C.D.5、下列多项式能用公式法分解因式的是()A.m2+4mnB.m2+n2C.a2+ab+b2D.a24ab+4b26、多项式x2y(ab)y(ba)提公因式后,余下的部分是()A.x2+1B.x+1C.x21D.x2y+y7、下列分解因式正确的是()A.100p225q2(10p+5q)(10p5q)B.x2+x6(x3)(x+2)C.4m2+n2(2m+n)(2mn)D.8、下列因式分解正确的是( )A.3ab26ab3a(b22b)B.x(ab)y(ba)(ab)(xy)C.a2+2ab4b2(a2b)2D.a2+a(2a1)29、下列由左边到右边的变形中

3、,属于因式分解的是( )A.(a1)(a1)a21B.a26a9(a3)2C.a22a1a(a2)1D.a25aa2(1)10、已知,则的值是( )A.6B.6C.1D.111、在下列从左到右的变形中,不是因式分解的是()A.x2xx(x1)B.x2+3x1x(x+3)1C.x2y2(x+y)(xy)D.x2+2x+1(x+1)212、下列各式从左到右的变形中,属于因式分解的是( )A.6x9y33(2x3y)B.x21(x1)2C.(xy)2x22xyy2D.2x222(x1)(x1)13、把多项式x2+ax+b分解因式,得(x+3)(x4),则a,b的值分别是()A.a1,b12B.a1,

4、b12C.a1,b12D.a1,b1214、下列多项式中有因式x1的是()x2+x2;x2+3x+2;x2x2;x23x+2A.B.C.D.15、下列因式分解正确的是( )A.B.C.D.二、填空题(10小题,每小题4分,共计40分)1、小明将(2020x+2021)2展开后得到a1x2+b1x+c1;小红将(2021x2020)2展开后得到a2x2+b2x+c2,若两人计算过程无误,则c1c2的值是_2、已知,则_3、分解因式_4、因式分解: _5、因式分解:_6、分解因式:_7、若关于的二次三项式可以用完全平方公式进行因式分解,则_8、分解因式:3x2y12xy2_9、若a+b2,ab3,

5、则代数式a3b+2a2b2+ab3的值为_10、dx42x3+x210x4,则当x22x40时,d_三、解答题(3小题,每小题5分,共计15分)1、因式分解:2、把因式分解3、因式分解:-参考答案-一、单选题1、D【分析】本题考查的是提公因式法与公式法的综合运用,根据分解因式的定义,以及完全平方公式即可作出解答.【详解】A. m2+n2,不能因式分解; B.16m24n2=4(4m2n)(4m+2n),原因式分解错误; C. a33a2+a=a(a23a+1),原因式分解错误; D.4a24ab+b2=(2ab)2,原因式分解正确.故选:D.【点睛】此题考查了运用提公因式法和公式法进行因式分解

6、,熟练掌握公式法因式分解是解本题的关键.2、D【分析】利用提取公因式法、平方差公式和完全平方公式法分别因式分解分析得出答案.【详解】解:选项A:3p23q23(p2q2)3(pq)(pq),不符合题意;选项B:m41(m21)(m21)m41(m21)(m1)(m1),不符合题意;选项C:2p2q1不能进行因式分解,不符合题意;选项D:m24m4(m2)2,符合题意.故选:D.【点睛】本题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.3、D【分析】根据平方差公式逐个判断即可.【详解】解:A.是m和n的平方和,不是m和n的平方差,不能用平方差公式分解因式,故本选项不符

7、合题意;B.是2x和y的平方和,不是2x和y的平方差,不能用平方差公式分解因式,故本选项不符合题意;C.是2a和b的平方和的相反数,不能用平方差公式分解因式,故本选项不符合题意;D.,能用平方差公式分解因式,故本选项符合题意;故选:D.【点睛】本题考查了平方差公式分解因式,能熟记公式a2-b2=(a+b)(a-b)是解此题的关键.4、B【分析】根据因式分解的定义:把一个多项式化成几个整式积的形式,像这样的式子变形叫做这个多项式的因式分解,进行求解即可.【详解】解:A、,不是整式积的形式,不是因式分解,不符而合题意;B、,是因式分解,符合题意;C、,不是乘积的形式,不是因式分解,不符合题意;D、

8、,不是乘积的形式,不是因式分解,不符合题意;故选B.【点睛】本题主要考查了因式分解的定义,熟知定义是解题的关键.5、D【分析】利用平方差公式,以及完全平方公式判断即可.【详解】解:A、原式m(m+4n),不符合题意;B、原式不能分解,不符合题意;C、原式不能分解,不符合题意;D、原式(a2b)2,符合题意.故选:D.【点睛】此题考查了因式分解运用公式法,熟练掌握平方差公式及完全平方公式是解本题的关键.6、A【详解】直接提取公因式y(ab)分解因式即可.【解答】解:x2y(ab)y(ba)x2y(ab)+y(ab)y(ab)(x2+1).故选:A.【点睛】此题主要考查了提取公因式法分解因式,正确

9、找出公因式是解题关键.7、C【分析】根据因式分解的各种方法逐个判断即可.【详解】解:A.,故本选项不符合题意;B.,故本选项不符合题意;C.故本选项符合题意;D.,所以,故本选项不符合题意;故选:C.【点睛】此题考查了因式分解的方法,熟练掌握因式分解的有关方法是解题的关键.8、D【分析】根据因式分解的定义及方法即可得出答案.【详解】A:根据因式分解的定义,每个因式要分解彻底,由3ab26ab3a(b22b)中因式b22b分解不彻底,故A不符合题意.B:将x(ab)y(ba)变形为x(ab)+y(ab),再提取公因式,得x(ab)y(ba)x(ab)+y(ab)(ab)(x+y),故B不符合题意

10、.C:形如a22ab+b2是完全平方式,a2+2ab4b2不是完全平方式,也没有公因式,不可进行因式分解,故C不符合题意.D:先将变形为,再运用公式法进行分解,得,故D符合题意.故答案选择D.【点睛】本题考查的是因式分解,注意因式分解的定义把一个多项式拆解成几个单项式乘积的形式.9、B【分析】根据因式分解的定义逐个判断即可.【详解】解:A.由左边到右边的变形属于整式乘法,不属于因式分解,故本选项不符合题意;B.由左边到右边的变形属于因式分解,故本选项符合题意;C.由左边到右边的变形不属于因式分解,故本选项不符合题意;D.等式的右边不是整式的积的形式,即由左边到右边的变形不属于因式分解,故本选项

11、不符合题意;故选:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.10、B【分析】首先将 变形为,再代入计算即可.【详解】解:, ,故选:B.【点睛】本题考查提公因式法因式分解,解题关键是准确找出公因式,将原式分解因式.11、B【分析】根据因式分解的定义,逐项分析即可,因式分解指的是把一个多项式分解为几个整式的积的形式.【详解】A. x2xx(x1),是因式分解,故该选项不符合题意; B. x2+3x1x(x+3)1,不是因式分解,故该选项符合题意;C. x2y2(x+y)(xy),是因式分解,故该选项不符合题意;

12、 D. x2+2x+1(x+1)2,是因式分解,故该选项不符合题意;故选B【点睛】本题考查了因式分解的定义,掌握因式分解的定义是解题的关键.12、D【分析】根据分解因式就是把一个多项式化为几个整式的积的形式的定义判断,利用排除法求解.【详解】解:A、6x+9y+3=3(2x+3y+1),故此选项错误;B、x2-1=(x+1)(x-1),故此选项错误;C、(x+y)2=x2+2xy+y2,是整式乘法运算,不是因式分解,故此选项错误;D、2x2-2=2(x-1)(x+1),属于因式分解,故此选项正确.故选:D.【点睛】本题考查的是因式分解的意义,正确掌握因式分解的定义是解题关键.13、A【分析】首

13、先利用多项式乘法将原式展开,进而得出a,b的值,即可得出答案.【详解】解:多项式x2+ax+b分解因式的结果为(x+3)(x-4),x2+ax+b=(x+3)(x-4)=x2-x-12,故a=-1,b=-12,故选:A.【点睛】此题主要考查了多项式乘法,正确利用乘法公式用将原式展开是解题关键.14、D【分析】根据十字相乘法把各个多项式因式分解即可判断.【详解】解:x2+x2;x2+3x+2;x2x2;x23x+2.有因式x1的是.故选:D.【点睛】本题考查了十字相乘法因式分解,对于形如的二次三项式,若能找到两数,使,且,那么就可以进行如下的因式分解,即.15、C【分析】利用平方差公式、完全平方

14、公式、提公因式法分解因式,分别进行判断即可.【详解】解:A、,故A错误;B、,故B错误;C、,故C正确;D、,故D错误;故选:C.【点睛】此题主要考查了公式法分解因式,关键是熟练掌握平方差公式:a2-b2=(a+b)(a-b);完全平方公式:a22ab+b2=(ab)2.二、填空题1、4041【分析】根据(2020x+2021)2=(2020x)2+220212020x+20212得到c120212,同理可得 c220202,所以c1-c2=20212-20202,进而得出结论.【详解】解:(2020x+2021)2=(2020x)2+220212020x+20212, c1=20212, (

15、2021x-2020)2=(2021x)2-220202021x+20202, c2=20202, c1-c2=20212-20202=(2021+2020)(2021-2020)=4041, 故答案为:4041.【点睛】本题主要考查了完全平方公式,平方差公式,解决本题的关键是要熟悉公式的结构特点.2、【分析】先将进行因式分解,然后根据已知条件,即可求解.【详解】解:,.故答案为:.【点睛】本题主要考查了平方差公式的应用,熟练掌握是解题的关键.3、【分析】原式提取2,再利用平方差公式分解即可.【详解】解:=2(x2-9)=2(x+3)(x-3).故答案为:2(x+3)(x-3).【点睛】此题考

16、查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.4、【分析】利用提公因式法分解即可.【详解】解:故答案为:【点睛】此题考查了因式分解-提公因式法,熟练掌握因式分解的方法是解本题的关键.5、【分析】根据十字相乘法分解即可.【详解】解:=,故答案为:.【点睛】本题考查了因式分解,熟练掌握十字相乘法是解题的关键.6、#【分析】根据完全平方公式进行因式分解即可.【详解】解:原式,故答案为:.【点睛】本题考查了根据完全平方公式因式分解性,掌握完全平方公式是解题的关键.7、-3或5【分析】直接利用完全平方公式进而分解因式得出答案.【详解】解:x2-2(m-1)x+16能用完全平方公

17、式进行因式分解,-2(m-1)=8,解得:m=-3或5.故答案为:-3或5.【点睛】此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键.8、【分析】根据提公因式法因式分解即可.【详解】3x2y12xy2故答案为:【点睛】本题考查了提公因式法因式分解,掌握提公因式法因式分解是解题的关键.9、-12【分析】根据a3b+2a2b2+ab3=ab(a2+2ab+b2)=ab(a+b)2,结合已知数据即可求出代数式a3b+2a2b2+ab3的值.【详解】解:a+b=2,ab=3,a3b+2a2b2+ab3=ab(a2+2ab+b2),=ab(a+b)2,=34,=12.故答案为:12.【点睛】

18、本题考查了因式分解的应用以及完全平方式的转化,注意因式分解各种方法的灵活运用是解题的关键.10、16【分析】先将x22x4=0化为x22x=4,再将d化为x2(x22x)+x22x8x4后整体代入计算可求解.【详解】解:x22x40,x22x4,dx42x3+x210x4x2(x22x)+x22x8x44x2+48x44(x22x)16.故答案为:16.【点睛】本题主要考查因式分解的应用,将d化x2(x22x)+x22x8x4是解题的关键.三、解答题1、【分析】把原式分组成,然后利用完全平方公式和平方差公式化简即可.【详解】解:原式【点睛】本题考查了利用完全平方公式和平方差公式因式分解,把原式有3项适合完全平方的放在一起进行因式分解是解答此题的关键.2、【分析】直接利用平方差公式以及完全平方公式分解因式得出答案.【详解】解:【点睛】此题主要考查了公式法分解因式,正确运用乘法公式是解题关键.3、【分析】先提公因式,然后利用十字相乘法分解因式,然后利用平方差公式分解因式即可求解.【详解】解:原式.【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁