《2021-2022学年浙教版初中数学七年级下册第四章因式分解专项测试试卷(浙教版).docx》由会员分享,可在线阅读,更多相关《2021-2022学年浙教版初中数学七年级下册第四章因式分解专项测试试卷(浙教版).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、章节同步练习2022年浙教版初中数学 七年级下册知识点习题定向攻克含答案及详细解析第四章 因式分解浙教版初中数学七年级下册第四章因式分解专项测试(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下列各选项中因式分解正确的是( )A.x21(x1)2B.a32a2aa2(a2)C.2y24y2y(y2)D.a2b2abbb(a1)22、对于,从左到右的变形,表述正确的是( )A.都是因式分解B.都是乘法运算C.是因式分解,是乘法运算D.是乘法运算,是因式分解3、下列关于2300+(2)301的计
2、算结果正确的是()A.2300+(2)301230023012300223002300B.2300+(2)3012300230121C.2300+(2)301(2)300+(2)301(2)601D.2300+(2)3012300+230126014、若,则的值为( )A.2B.3C.4D.65、下列各式从左到右的变形中,为因式分解的是()A.x(ab)axbxB.x21+y2(x1)(x+1)+y2C.ax+bx+cx(a+b)+cD.y21(y+1)(y1)6、下列因式分解正确的是()A.ab+bc+bb(a+c)B.a29(a+3)(a3)C.(a1)2+(a1)a2aD.a(a1)a2
3、a7、已知下列多项式:;.其中,能用完全平方公式进行因式分解的有( )A.B.C.D.8、若多项式能因式分解为,则k的值是( )A.12B.12C.D.69、已知,则代数式的值为( )A.B.1C.D.210、下列多项式因式分解正确的是( )A.B.C.D.11、下列各式从左到右的变形,因式分解正确的是()A.x2+4(x+2)2B.x210x+16(x4)2C.x3xx(x21)D.2xy+6y22y(x+3y)12、已知,则的值为( )A.0和1B.0和2C.0和-1D.0或113、下列因式分解正确的是( )A.B.C.D.14、下面的多项式中,能因式分解的是()A.2m2B.m2+n2C
4、.m2nD.m2n+115、下列多项式:;.能用公式法分解因式的是( )A.B.C.D.二、填空题(10小题,每小题4分,共计40分)1、因式分解:_2、分解因式:xy3x+y3_3、因式分解a39a_4、因式分解:_5、若,则代数式的值等于_6、因式分解x2+ax+b时,李明看错了a的值,分解的结果是(x+6)(x2),王勇看错了b的值,分解的结果是(x+2)(x3),那么x2+ax+b因式分解正确的结果是_7、因式分解: _8、分解因式:_9、因式分解:m2+2m_10、若,则的值是_三、解答题(3小题,每小题5分,共计15分)1、(1)因式分解:(2)解方程组:2、分解因式:(1); (
5、2)3、因式分解:-参考答案-一、单选题1、D【分析】因式分解是将一个多项式化成几个整式的积的形式,根据定义分析判断即可.【详解】解:A、,选项错误;B、,选项错误;C、 ,选项错误;D、,选项正确.故选:D【点睛】本题考查的是因式分解,能够根据要求正确分解是解题关键.2、C【分析】根据因式分解和整式乘法的有关概念,对式子进行判断即可.【详解】解:,从左向右的变形,将和的形式转化为乘积的形式,为因式分解;,从左向右的变形,由乘积的形式转化为和的形式,为乘法运算;故答案为C.【点睛】此题考查了因式分解和整式乘法的概念,熟练掌握有关概念是解题的关键.3、A【分析】直接利用积的乘方运算法则将原式变形
6、,再利用提取公因式法分解因式计算得出答案.【详解】2300+(2)301230023012300223002300.故选:A.【点睛】此题主要考查了提取公因式法分解因式以及有理数的混合运算,正确将原式变形是解题关键.4、C【分析】把变形为,代入a+b=2后,再变形为2(a+b)即可求得最后结果.【详解】解:a+b=2,a2-b2+4b=(a-b)(a+b)+4b,=2(a-b)+4b,=2a-2b+4b,=2(a+b),=22,=4.故选:C.【点睛】本题考查了代数式求值的方法,同时还利用了整体思想.5、D【分析】根据因式分解的定义解答即可.【详解】解:A、x(ab)axbx,是整式乘法,故此
7、选项不符合题意;B、x21+y2(x1)(x+1)+y2,不是因式分解,故此选项不符合题意;C、ax+bx+cx(a+b)+c,不是因式分解,故此选项不符合题意;D、y21(y+1)(y1),是因式分解,故此选项符合题意.故选D.【点睛】本题主要考查了因式分解的定义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.6、B【分析】把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解.【详解】解:A.ab+bc+bb(a+c+1),因此选项A不符合题意;B.a29(a+3)(a3),因此选项B符合题意;C.(a1)2+(a1)(a1)(a1+1
8、)a(a1),因此选项C不符合题意;D.a(a1)a2a,不是因式分解,因此选项D不符合题意;故选:B.【点睛】本题考查因式分解,涉及提公因式、平方差、完全平方公式等知识,是重要考点,掌握相关知识是解题关键.7、D【分析】根据完全平方公式的结构特点即可得出答案.【详解】解:不能用完全平方公式分解;,能用完全平方公式分解;,能用完全平方公式分解;,能用完全平方公式分解;故选:D.【点睛】本题考查了公式法分解因式,掌握a22ab+b2=(ab)2是解题的关键.8、A【分析】根据完全平方公式先确定a,再确定k即可.【详解】解:解:因为多项式能因式分解为,所以a=6.当a=6时,k=12;当a=-6时
9、,k =-12.故选:A.【点睛】本题考查了完全平方式.掌握完全平方公式的特点,是解决本题的关键.本题易错,易漏掉k=-12.9、D【分析】由已知等式可得,将变形,再代入逐步计算.【详解】解:,=2故选D.【点睛】本题考查了代数式求值,因式分解的应用,解题的关键是掌握整体思想,将所求式子合理变形.10、C【分析】根据因式分解的步骤:先提公因式,再用公式法分解即可求得答案.注意分解要彻底.【详解】解:A. ,故A选项错误;B. ,故B选项错误;C. ,故C选项正确;D. ,故D选项错误,故选C.【点睛】本题考查了提公因式法,公式法分解因式.注意因式分解的步骤:先提公因式,再用公式法分解.注意分解
10、要彻底.11、D【分析】根据因式分解的方法解答即可.【详解】解:A、x2+4(x+2)2,因式分解错误,故此选项不符合题意;B、x2-10x+16(x-4)2,因式分解错误,故此选项不符合题意;C、x3-x=x(x2-1)=x(x+1)(x-1),因式分解不彻底,故此选项不符合题意;D、2xy+6y2=2y(x+3y),因式分解正确,故此选项符合题意;故选:D.【点睛】本题考查了因式分解的方法,明确因式分解的结果应是整式的积的形式.运用提公因式法分解因式时,在提取公因式后,不要漏掉另一个因式中商是1的项.12、B【分析】根据已知条件得出(x-1)3-(x-1)=0,再通过因式分解求出x的值,然
11、后代入要求的式子进行计算即可得出答案.【详解】解:,x-1=(x-1)3,(x-1)3-(x-1)=0,(x-1)(x-1)2-1=0,(x-1)(x-1+1)(x-1-1)=0,x(x-1)(x-2)=0,x1=0,x2=1,x3=2,x2-x=0或x2-x=12-1=0或x2-x=22-2=2,故选:B.【点睛】此题考查了立方根,因式分解的应用,解题的关键是通过式子变形求出x的值.13、D【分析】A.直接利用平方差公式分解因式得出答案;B.直接提取公因式a,进而分解因式即可;C.直接利用完全平方公式分解因式得出答案;D.首先提取公因式2,再利用完全平方公式分解因式得出答案.【详解】解:A.
12、x2-9=(x-3)(x+3),故此选项不合题意;B.a3-a2+a=a(a2-a+1),故此选项不合题意;C.(x-1)2-2(x-1)+1=(x-2)2,故此选项不合题意;D.2x2-8xy+8y2=2(x-2y)2,故此选项符合题意;故选:D.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.14、A【分析】分别根据提公因式法因式分解以及乘法公式逐一判断即可.【详解】解:A、2m22(m1),故本选项符合题意;B、m2+n2,不能因式分解,故本选项不合题意;C、m2n,不能因式分解,故本选项不合题意;D、m2n+1,不能因式分解,故本选项不合题意;故选A.
13、【点睛】本题主要考查了因式分解,解题的关键在于能够熟练掌握因式分解的方法.15、C【分析】根据公式法的特点即可分别求解.【详解】不能用公式法因式分解;,可以用公式法因式分解;不能用公式法因式分解;=,能用公式法因式分解;=,能用公式法因式分解.能用公式法分解因式的是故选C.【点睛】此题主要考查因式分解,解题的关键是熟知乘方公式的特点.二、填空题1、【分析】先提取公因式3,再对余下的多项式利用平方差公式继续分解.【详解】解:3x2-3y2=3(x2-y2)=3(x+y)(x-y).故答案为:3(x+y)(x-y).【点睛】本题考查了用提公因式法和公式法进行因式分解,一个多项式有公因式首先提取公因
14、式,然后再用其他方法进行因式分解,同时因式分解要彻底,直到不能分解为止.2、(y3)(x+1)【分析】直接利用分组分解法、提取公因式法分解因式得出答案.【详解】解:xy3x+y3x(y3)+(y3)(y3)(x+1).故答案为:(y3)(x+1).【点睛】本题主要考查了利用提取公因式的方法分解因式,解题的关键在于能够熟练掌握提公因式的方法分解因式.3、;【分析】先提取公因式a,再根据平方差公式进行二次分解即可求得答案.【详解】a39a=故答案为:【点睛】本题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底.4、【分析】将y(1-m)变形为-y(m-1),
15、再提取公因式即可.【详解】x(m-1)+ y(1-m)= x(m-1)-y(m-1),=(x-y)(m-1),故答案为:(x-y)(m-1).【点睛】本题考查了因式分解,熟练进行代数式的变形构造公因式是解题的关键.5、4【分析】直接利用已知代数式将原式得出x+y=2,再将原式变形把数据代入求出答案.【详解】解:x+y-2=0,x+y=2,则代数式x2+4y-y2=(x+y)(x-y)+4y=2(x-y)+4y=2(x+y)=4.故答案为:4.【点睛】此题主要考查了公式法的应用,正确将原式变形是解题关键.6、(x4)(x+3)【分析】根据甲、乙看错的情况下得出a、b的值,进而再利用十字相乘法分解
16、因式即可.【详解】解:因式分解x2+ax+b时,李明看错了a的值,分解的结果是(x+6)(x2),b6(2)12,又王勇看错了b的值,分解的结果为(x+2)(x3),a3+21,原二次三项式为x2x12,因此,x2x12(x4)(x+3),故答案为:(x4)(x+3).【点睛】本题主要考查了十字相乘分解因式,解题的关键在于能够熟练掌握十字相乘法.7、【分析】利用提公因式法分解即可.【详解】解:故答案为:【点睛】此题考查了因式分解-提公因式法,熟练掌握因式分解的方法是解本题的关键.8、【分析】根据分解因式的步骤,先提取公因式再利用完全平方公式分解即可.【详解】解:,故答案为: .【点睛】本题主要
17、考查了因式分解,熟悉掌握因式分解的方法是解题的关键.9、【分析】根据提公因式法因式分解即可.【详解】.故答案为:.【点睛】本题考查了提公因式法因式分解,掌握提公因式法因式分解是解题的关键.10、16【分析】将代数式因式分解,再将已知式子的值代入计算即可.【详解】解:,=16故答案为:16.【点睛】此题考查代数式求值,因式分解的应用,注意整体代入思想是解答此题的关键.三、解答题1、(1);(2)【分析】(1)先提公因式,再利用平方差公式即可;(2)利用加减消元法先消去,求出,再将的值代入求出,进而确定方程组的解即可.【详解】解:(1)原式;(2),得,把代入得.,原方程组的解为.【点睛】本题考查提公因式法、公式法分解因式,二元一次方程组的解,掌握平方差公式的结构特征以及二元一次方程组的解法是正确解答的关键.2、(1);(2).【分析】(1)先提取公因式xy,然后再运用公式法分解即可;(2)采用分组法、再运用平方差公式因式分解即可.【详解】解:(1)=)=; (2)=.【点睛】本题主要考查了因式分解,掌握分组法、提取公因式法和公式法是解答本题的关键.3、【分析】根据平方差公式“”进行解答即可得.【详解】解:原式=【点睛】本题考查了因式分解,解题的关键是掌握平方差公式.