《2021-2022学年度北师大版八年级数学下册第五章分式与分式方程专项测评试题(含详解).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度北师大版八年级数学下册第五章分式与分式方程专项测评试题(含详解).docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第五章分式与分式方程专项测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、近几年鞍山市的城市绿化率逐年增加,其中2019年,2020年,2021年鞍山的城市绿化面积分别是,2021
2、年与2020年相比,鞍山城市绿化的增长率提高( )ABCD2、分式有意义,则x满足的条件是( )ABCD3、使分式有意义的x取值范围是( )ABCD4、用科学记数法表示数5.8105,它应该等于()A0.005 8B0.000 58C0.000 058D0.00 005 85、式子中x的取值范围是( )Ax2Bx2Cx2Dx2且x26、北斗三号系统产生的时间基准可达到300万年误差1秒,创造了卫星授时的“中国精度”北斗卫星授时精度为,这个精度以s为单位表示为( )ABCD7、下列代数式中:,共有分式( )A2个B3个C4个D5个8、某种微粒的直径为0.0000058米,那么该微粒的直径用科学记
3、数法可以表示为( )A0.58106B5.8106C58105D5.81059、下列各式计算正确的是( )ABCD10、下列各分式中,当x1时,分式有意义的是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、新型冠状病毒的直径约为,数0.0000001用科学记数法表示为_2、在一个不透明的盒子中装有2个白球,若干个黄球,它们除颜色不同外,其余均相同若从中随机摸出一个球,它是白球的概率为,则黄球的个数为_3、从3,1,1,3这五个数中,随机抽取一个数,记为a,若数a使关于x的不等式组无解,且使关于x的分式方程1有整数解,那么这5个数中所有满足条件的a的值之和是_
4、4、若分式有意义,则x的取值范围是 _5、当时,分式无意义,则_三、解答题(5小题,每小题10分,共计50分)1、一粥一饭当思来之不易,半丝半缕恒念物力维艰开展“光盘行动”,拒绝“舌尖上的浪费”,已经成为一种时尚 某学校食堂为了鼓励同学们做到光盘不浪费,针对每餐后光盘的学生奖励苹果或砂糖橘一份近日,学校食堂花了1500 元和1800元分别采购了砂糖橘和苹果,采购的砂糖橘比苹果多50千克,砂糖橘每千克的价格比苹果每千克的价格低40%求苹果每千克的价格2、已知正实数a满足a+5,且1a,求a的值3、化简:4、解答:(1)计算:(2)解分式方程:5、列方程解应用题:某市为了缓解交通拥堵现象,决定修建
5、一条轻轨铁路的延长线,为使该延长线工程比原计划提前1个月完成,在保证质量的前提下,必须把工作效率提高10%问原计划完成这项工程需要用多少个月?-参考答案-一、单选题1、C【分析】求出2021年与2020年城市绿化的增长率,相减即可【详解】解:2020年城市绿化的增长率为:;2021年城市绿化的增长率为:;2021年与2020年相比,鞍山城市绿化的增长率提高;故选:C【点睛】本题考查了列分式,解题关键是熟悉增长率的求法,正确列出分式并作差2、B【分析】根据分式有意义的条件,分母不为0,即可求解【详解】解:分式有意义,故选B【点睛】本题考查了分式有意义的条件,掌握分式有意义的条件即分母不为0是解题
6、的关键3、C【分析】令分母x+10,求解即可【详解】分式有意义,x+10,即,故选C【点睛】本题考查了分式有意义的条件,让分母不等于零转化为不等式求解是解题的关键4、C【分析】把5.8的小数点向右移动5个位,即可得到【详解】故选:C【点睛】本题考查把科学记数法表示的数还原,理解用科学记数法表示绝对值较小的数,并能够还原是解题的关键5、D【分析】根据二次根式及分式有意义的条件可直接进行求解【详解】解:由题意得:且,解得:且;故选D【点睛】本题主要考查二次根式及分式有意义的条件,熟练掌握二次根式及分式有意义的条件是解题的关键6、C【分析】将10乘以对应的进率即可得到答案【详解】解:10ns=s,
7、故选:C【点睛】此题考查同底数幂的乘法法则:底数不变,指数相加,正确掌握同底数幂的计算法则及单位的换算进率是解题的关键7、B【分析】根据分式的定义,分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式,即可得出正确答案【详解】解:在,中,是分式的有,共3个;故选:B【点睛】本题主要考查分式的概念,分式与整式的区别主要在于:分母中是否含有未知数熟练掌握运用这个区别是解题关键8、B【分析】将原数表示成形式a10-n(1|a|10,n为正整数)【详解】解:0.0000058米用科学记数法可以表示为5.810-6米故选:B【点睛】本题主要考查了运用科学记数法表示较小的数,其一般形式为a1
8、0-n(1|a|10,n为正整数),确定a和n的值成为解答本题的关键9、D【分析】根据分式的运算法则逐项计算即可判断【详解】解:A. ,原选项错误,不符合题意;B. ,原选项错误,不符合题意;C. ,原选项错误,不符合题意;D. ,原选项正确,符合题意;故选:D【点睛】本题考查了分式的运算,解题关键是熟记分式运算法则,准确进行计算10、A【分析】根据分式有意义的条件:分母不为零,进行逐一判断即可【详解】解:A、当x1时,分母2x+110,所以分式有意义;故本选项符合题意;B、当x1时,分母x+10,所以分式无意义;故本选项不符合题意;C、当x1时,分母x210,所以分式无意义;故本选项不符合题
9、意;D、当x1时,分母x2+x0,所以分式无意义;故本选项不符合题意;故选A【点睛】本题主要考查了分式有意义的条件,熟知分式有意义的条件是解题的关键二、填空题1、1107【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10n,与较大数的科学记数法不同的是其所使用的是负整指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.00000011107,故答案是:1107【点睛】本题考查用科学记数法表示较小的数,一般形式为a10n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定2、1【分析】设黄球的个数为x个,然后根据概率公式列方程,解
10、此分式方程即可求得答案【详解】解:设黄球的个数为x个,根据题意得:,解得:x=1,经检验,x=1是原分式方程的解,黄球的个数为1个故答案为:1【点睛】此题考查了分式方程的应用,以及概率公式的应用用到的知识点为:概率=所求情况数与总情况数之比3、【分析】不等式组中两不等式整理后,由不等式组无解确定出a的范围,进而舍去a不合题意的值,分式方程去分母转化为整式方程,表示出整数方程的解,由分式方程有整数解,确定出满足题意a的值,求出之和即可【详解】解:解不等式得:,解不等式得:不等式组的解集为,由不等式组无解,得到a1,即a3,1,1,分式方程去分母得:x+a23x,解得:x,由分式方程的解为整数,得
11、到a-3,1,所有满足条件的a的值之和是-3+1=-2,故答案为:-2【点睛】本题主要考查了解一元一次不等式组和解分式方程,解题的关键在于能够熟练掌握相关知识进行求解4、【分析】根据分式有意义的条件,即可求解【详解】解:根据题意得: ,解得: 故答案为:【点睛】本题主要考查了分式有意义的条件,熟练掌握当分式的分母不等于0时分式有意义是解题的关键5、10【分析】根据分母为零分式无意义,可得答案【详解】解:对于分式,当x=2时,分式无意义,得52-a=0,解得a=10故答案是:10【点睛】本题考查的是分式无意义的条件,熟知分式无意义的条件是分母等于零是解答此题的关键三、解答题1、14元【分析】设苹
12、果每千克的价格为元,则砂糖橘每千克的价格为元根据“学校食堂花了1500 元和1800元分别采购了砂糖橘和苹果,采购的砂糖橘比苹果多50千克,”列出方程,即可求解【详解】解:设苹果每千克的价格为元,则砂糖橘每千克的价格为元根据题意,得解得经检验:是原分式方程的解,且符合题意,苹果每千克的价格为14元【点睛】本题主要考查了分式方程的应用,明确题意,准确得到等量关系是解题的关键2、【详解】由题意根据a+5,且1a,利用完全平方公式和算术平方根的定义,可以求得所求式子的值【分析】解:a+5,a22+(a)221,a,1a,1a0,0a1,a0,a【点睛】本题考查分式的化简求值以及实数的运算,解答本题的
13、关键是明确它们各自的计算方法3、【分析】有分式的加减乘除运算进行化简,即可得到答案【详解】解:原式;【点睛】本题考查了分式的加减乘除运算,分式的化简求值,解题的关键是掌握运算法则,正确的进行化简4、(1)(2)【分析】(1)根据二次根式、零指数幂、负整数指数幂的运算法则计算即可得答案;(2)方程两边同时乘以最简公分母(x1),将方程去分母转化为整式方程,解方程后检验即可得答案(1)=(2)方程两边同乘(x1)得:,去括号得:,移项、合并得:3x2,解得:x,经检验x是原方程的解,原方程的解为x【点睛】本题考查二次根式的混合运算、零指数幂、负整数指数幂的运算及解分式方程,熟练掌握运算法则及解分式方程的步骤是解题关键5、【分析】设原计划完成这项工程需要用个月,则原计划的效率为 实际的效率为 再根据实际的效率比原计划的效率提高10%,再列方程,解方程即可.【详解】解:设原计划完成这项工程需要用个月,则 整理得: 解得: 经检验:符合题意;答:原计划完成这项工程需要用个月.【点睛】本题考查的是分式方程的应用,掌握“利用分式方程解决工程问题”是解本题的关键.