2021-2022学年北师大版八年级数学下册第五章分式与分式方程章节测评试题(含详解).docx

上传人:知****量 文档编号:28147882 上传时间:2022-07-26 格式:DOCX 页数:16 大小:290.98KB
返回 下载 相关 举报
2021-2022学年北师大版八年级数学下册第五章分式与分式方程章节测评试题(含详解).docx_第1页
第1页 / 共16页
2021-2022学年北师大版八年级数学下册第五章分式与分式方程章节测评试题(含详解).docx_第2页
第2页 / 共16页
点击查看更多>>
资源描述

《2021-2022学年北师大版八年级数学下册第五章分式与分式方程章节测评试题(含详解).docx》由会员分享,可在线阅读,更多相关《2021-2022学年北师大版八年级数学下册第五章分式与分式方程章节测评试题(含详解).docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、北师大版八年级数学下册第五章分式与分式方程章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、当分式有意义时,x的取值范围是( )ABCD2、飞沫一般认为是直径大于5微米(5微米0.000005米)的

2、含水颗粒飞沫传播是新型冠状病毒的主要传播途径之一,日常面对面说话、咳嗽、打喷嚏都可能造成飞沫传播因此有效的预防措施是戴口罩并尽量与他人保持1米以上社交距离将0.000005用科学记数法表示应为( )ABCD3、下列各式中,是分式的是( )ABCD4、下列关于x的方程是分式方程的是( )ABCD5、若分式有意义,则的取值范围是( )Aa2Ba0Ca2Da26、化简,正确结果是( )ABCD7、如果分式的值等于0,那么x的值是()ABCD8、若分式中的x和y都扩大2倍,那么分式的值()A扩大2倍B不变C缩小2倍D扩大4倍9、如果把分式中的x和y都扩大3倍,那么分式的值()A扩大到原来的3倍B扩大到

3、原来的9倍C缩小到原来的D缩小到原来的10、下列分式中,是最简分式的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若是分式方程的根,则a的值为 _2、已知 ,则的值为_ 3、已知:关于x的方程的两个解为x1a,x2,方程的两个解为x1a,x2,方程的两个解为x1a,x2,则关于x的方程的两个解为_4、某车间有,型的生产线共12条,型生产线每条生产线每小时的产量分别为4m,2m,件,为正整数该车间准备增加3种类型的生产线共7条,其中型生产线增加1条受到限电限产的影响,每条生产线(包括之前的和新增的生产线)每小时的产量将减少4件,统计发现,增加生产线后,该

4、车间每小时的总产量恰比增加生产线前减少10件,且型生产线每小时的产量与三种类型生产线每小时的总产量之比为请问增加生产线后,该车间所有生产线每小时的总产量为_件5、若分式的值为0,则x的值是_三、解答题(5小题,每小题10分,共计50分)1、化简:2、先化简,再求值:,其中3、已知,求代数式的值4、解方程: 5、计算:-参考答案-一、单选题1、C【分析】分式有意义的条件是分式的分母不等于零,据此解答【详解】解:由题意得,解得,故选:C【点睛】此题考查了分式有意义的条件,熟记条件并正确计算是解题的关键2、D【分析】将0.000005写成a10n(1|a|10,n为整数)的形式即可【详解】解:0.0

5、00005=510-6故选D【点睛】本题主要考查了科学记数法,将原数写成a10n(1|a|10,n为整数)的形式,确定a、n的值成为解答本题的关键3、B【分析】一般地,如果A,B表示两个整式,并且B中含有字母,那么式子叫做分式【详解】解:A是整式,不符合题意;B是分式,符合题意;C是整式,不符合题意;D是整式,不符合题意;故选:B【点睛】本题主要考查的是分式的定义,掌握分式的定义是解题关键4、C【分析】根据分式方程的定义判断选择即可【详解】A. ,是一元一次方程,不符合题意; B. ,是一元一次方程,不符合题意; C. ,是分式方程,符合题意; D. ,是一元一次方程,不符合题意故选:C【点睛

6、】本题考查分式方程的定义掌握分式方程是指分母里含有未知数或含有未知数整式的有理方程是解答本题的关键5、A【分析】根据分式的分母不能为0即可得【详解】解:由题意得:,解得,故选:A【点睛】本题考查了分式有意义的条件,掌握理解分式的分母不能为0是解题关键6、C【分析】根据分式混合运算法则进行化简即可【详解】解:=,故选:C【点睛】本题考查分式的混合运算、平方差公式,熟练掌握分式混合运算法则是解答的关键7、B【分析】根据分式的值为0的条件可得,即可求得答案【详解】解:分式的值等于0,故选B【点睛】本题考查了分式的值为0的条件,解题的关键是理解分式的值为0的条件是分子为0,分母不为08、A【分析】根据

7、题意及分式的性质可直接进行求解【详解】解:由题意得:,分式的值比原分式扩大了2倍;故选A【点睛】本题主要考查分式的性质,熟练掌握分式的性质是解题的关键9、A【分析】x和y都扩大到原来的3倍就是分别变成原来的3倍,变成3x和3y用3x和3y代替式子中的x和y,根据得到的式子与原来的式子的关系进行判断即可【详解】解:用3x和3y代替式子中的x和y得:分式的值扩大到原来的3倍,故选A【点睛】本题考查分式的基本性质,解题的关键是抓住分子、分母变化的倍数,解此类题首先把字母变化后的值代入式子中,然后约分,再与原式比较,最终得出结论10、B【分析】直接利用分式的基本性质结合最简分式的定义:分子与分母不含公

8、因式的分式叫做最简分式,进而判断即可【详解】解:A、的分子与分母含公因式(x+1),不属于最简分式,不符合题意; B、的分子与分母不含公因式,属于最简分式,符合题意;C、的分子与分母含公因式a,不属于最简分式,不符合题意;D、的分子与分母含公因式(ab),不属于最简分式,不符合题意;故选:B【点睛】此题主要考查了最简分式,正确掌握最简分式的定义(分子与分母不含公因式的分式叫做最简分式)是解题关键二、填空题1、6【分析】首先根据题意,把代入分式方程中,然后根据一元一次方程的解法,求出a的值即可【详解】解:将代入分式方程中,可得:,解得,故答案为:6【点睛】本题考查了分式方程的解,解题的关键是熟练

9、掌握分式方程解的意义2、8【分析】等式两边同时乘以(a-4)(b-4),去分母整理即可求解【详解】解:等式两边同时乘以(a-4)(b-4),得,即,即,即,即,故答案为:8【点睛】本题考查了分式的加减运算,掌握分式的运算法则是解题的关键3、x1a,x2【分析】根据关于x的方程的两个解为x1a,x2,方程的两个解为x1a,x2,方程的两个解为x1a,x2,得到规律求解即可【详解】解:关于x的方程的两个解为x1a,x2,方程的两个解为x1a,x2,方程的两个解为x1a,x2,依规律,得x1a1或x1,解得:x1a,x2故答案为:x1a,x2【点睛】本题主要考查了与分式有关的规律型问题,解题的关键在

10、于根据题意找到规律并且构造4、134【分析】设增加生产线前A、B、C型生产线各有x、y、z条,增加生产线后A型增加a条,则C型增加(7-1-a)条,由题意得:,从而可以求出,由m是正整数,且是整数,可求出,再由A型生产线每小时的产量与三种类型生产线每小时的总产量之比为30:67可得可以求出,由是非负整数,则一定能被40整除,即的个位数字一定是0,即的个位数字一定是4,即可求出,由此即可得到答案【详解】解:设增加生产线前A、B、C型生产线各有x、y、z条,增加生产线后A型增加a条,则C型增加(7-1-a)条,由题意得:,x+y+z=12,整理得:,m是正整数,或或或或或,又且是整数,只有符合题意

11、,即, A型生产线每小时的产量与三种类型生产线每小时的总产量之比为30:67,是非负整数,一定能被40整除,的个位数字一定是0,即的个位数字一定是4,又是非负整数,经检验当,时,原分式方程分母不为0,该车间所有生产线每小时的总产量为,故答案为:134【点睛】本题主要考查了二元一次方程和分式方程,解题的关键在于能够理解题意列出方程求解5、2【分析】根据分式值为零的条件:分子为零,分母不为零即可求解【详解】依题意可得x-2=0,x+10x=2故答案为:2【点睛】此题主要考查分式值为零的条件,解题的关键是熟知分式的值为零的条件三、解答题1、【分析】有分式的加减乘除运算进行化简,即可得到答案【详解】解

12、:原式;【点睛】本题考查了分式的加减乘除运算,分式的化简求值,解题的关键是掌握运算法则,正确的进行化简2、;【分析】先将除法转化为乘法,同时将分子分母因式分解,进而根据分式的性质化简,再将x=3代入化简后的结果【详解】解:原式,当时原式【点睛】本题考查了分式的化简求值,掌握分式的性质与因式分解是解题的关键3、1【分析】先化简分式得到原式,再将代入即可得到结果【详解】解:,原式=1【点睛】本题考查了分式的化简求值:先进行分式的乘除运算(把分子或分母因式分解,约分),再进行分式的加减运算(即通分),然后把字母的值代入(或整体代入)进行计算4、【分析】先去分母把方程化为整式方程,再解整式方程并检验即可.【详解】解:去分母得: 去括号得: 整理得: 解得: 经检验:是原方程的解,所以原方程的解是.【点睛】本题考查的是解分式方程,掌握“解分式方程的步骤”是解本题的关键.5、1【分析】直接利用分式的加减运算法则计算即可【详解】解:,【点睛】本题主要考查了分式的加减运算,解题的关键是正确掌握运算法则

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁