2021-2022学年度强化训练北师大版八年级数学下册第四章因式分解同步练习试题(含详细解析).docx

上传人:知****量 文档编号:28173768 上传时间:2022-07-26 格式:DOCX 页数:15 大小:176.75KB
返回 下载 相关 举报
2021-2022学年度强化训练北师大版八年级数学下册第四章因式分解同步练习试题(含详细解析).docx_第1页
第1页 / 共15页
2021-2022学年度强化训练北师大版八年级数学下册第四章因式分解同步练习试题(含详细解析).docx_第2页
第2页 / 共15页
点击查看更多>>
资源描述

《2021-2022学年度强化训练北师大版八年级数学下册第四章因式分解同步练习试题(含详细解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度强化训练北师大版八年级数学下册第四章因式分解同步练习试题(含详细解析).docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、北师大版八年级数学下册第四章因式分解同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、对于有理数a,b,c,有(a+100)b(a+100)c,下列说法正确的是()A若a100,则bc0B若a100

2、,则bc1C若bc,则a+bcD若a100,则abc2、多项式分解因式的结果是( )ABCD3、下列各组式子中,没有公因式的一组是()A2xy与xB(ab)2与abCcd与2(dc)Dxy与x+y4、下列各式从左至右是因式分解的是( )ABCD5、下列因式分解错误的是( )A3x3y3(xy)Bx24(x2)(x2)Cx26x9(x9)2Dx2x2(x1)(x2)6、因式分解:x34x2+4x()ABCD7、计算的值是()ABCD28、若、为一个三角形的三边长,则式子的值( )A一定为正数B一定为负数C可能是正数,也可能是负数D可能为09、下列各式由左边到右边的变形中,是因式分解的为( )Aa

3、(x+y)ax+ayB10x25x5x(2x1)Cx24x+4(x4)2Dx216+3x(x+4)(x4)+3x10、已知m1n,则m3+m2n+2mn+n2的值为( )A2B1C1D2第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、分解因式:a32a2b+ab2_2、因式分解:_3、因式分解:=_4、在实数范围内因式分解:x26x+1_5、若ABC的三条边a,b,c满足关系式:a4b2c2a2c2b40,则ABC的形状是_三、解答题(5小题,每小题10分,共计50分)1、(1)分解因式 (2)计算2、因式分解:3、因式分解:(1)9y2 - 16x2 (2)x2(xy

4、)+9(yx)(3)a 2 -4a+4 (4)2a312a218a4、将下列多项式进行因式分解:(1);(2)5、(1)计算:2; (2)因式分解:31212x-参考答案-一、单选题1、A【分析】将等式移项,然后提取公因式化简,根据乘法等式的性质,求解即可得【详解】解:,或,即:或,A选项中,若,则正确;其他三个选项均不能得出,故选:A【点睛】题目主要考查利用因式分解化简等式,熟练掌握因式分解的方法是解题关键2、B【分析】先提取公因式a,再根据平方差公式进行二次分解平方差公式:a2-b2=(a+b)(a-b)【详解】解:ax2-ay2=a(x2-y2)=a(x+y)(x-y)故选:B【点睛】本

5、题考查了提公因式法,公式法分解因式,提取公因式后利用平方差公式进行二次分解,注意分解要彻底3、D【分析】根据公因式是各项中的公共因式逐项判断即可【详解】解:A、2xy与x有公因式x,不符合题意;B、(ab)2与ab有公因式ab,不符合题意;C、cd与2(dc)有公因式cd,不符合题意;D、xy与x+y没有公因式,符合题意,故选:D【点睛】本题考查公因式,熟练掌握确定公因式的方法是解答的关键4、A【分析】根据因式分解的定义逐个判断即可【详解】解:A、,等式从左到右的变形属于因式分解,故本选项符合题意;B、,等式的右边不是几个整式的积的形式,不是因式分解,故本选项不符合题意;C、,是整式的乘法,不

6、是因式分解,故本选项不符合题意;D、,是整式的乘法,不是因式分解,故本选项不符合题意故选:A【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解5、C【分析】提取公因式判断A,根据平方差公式和完全平方公式分解因式判断B,C,D即可【详解】解:显然对于A,B,D正确,不乖合题意,对于C:右边左边,故C错误,符合题意;故选:C【点睛】本题考查了因式分解,熟练掌因式分解的方法是解题的关键6、A【分析】根据因式分解的解题步骤,“一提、二套、三查”,进行分析,首先将整式进行提公因式,变为:,之后套公式变为:,即可得出对应答案【详

7、解】解:原式故选:A【点睛】本题考查的是因式分解的基础应用,熟练掌握因式分解的一般解题步骤,以及各种因式分解的方法是解题的关键7、B【分析】直接找出公因式进而提取公因式,进行分解因式即可【详解】解:故选:B【点睛】此题主要考查了提取公因式法分解因式,正确找出公因式是解题关键8、B【分析】先分解因式,再根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边,即可求解【详解】解:原式=(a-c+b)(a-c-b),两边之和大于第三边,两边之差小于第三边,a-c+b0,a-c-b0,两数相乘,异号得负,代数式的值小于0故选:B【点睛】本题利用了因式分解,以及三角形中三边的关系:在三角形中,任意

8、两边之和第三边,任意两边之差第三边9、B【分析】根据因式分解定义,把一个多项式化为几个整式的积的形式,对各选项进行一一分析即可【详解】解:A. a(x+y)ax+ay,多项式乘法,故选项A不合题意B. 10x25x5x(2x1)是因式分解,故选项B符合题意;C. x24x+4(x2)2因式分解不正确,故选项C不合题意;D. x216+3x(x+4)(x4)+3x,不是因式分解,故选项D不符合题意故选B【点睛】本题考查因式分解,掌握因式分解的定义是解题关键10、C【分析】先化简代数式,再代入求值即可;【详解】m1n,m+n1,m3+m2n+2mn+n2m2(m+n)+2mn+n2m2+2mn+n

9、2(m+n)2121,故选:C【点睛】本题主要考查了代数式求值,准确计算是解题的关键二、填空题1、【分析】先提取公因式a,再利用完全平方公式因式分解【详解】解:,故答案为:【点睛】本题考查综合利用提公因式法和公式法因式分解一般有公因式先提取公因式,再看是否能用公式法因式分解2、【分析】先提取公因式,再用完全平方公式分解即可【详解】解:,=,=故答案为:【点睛】本题考查了因式分解,解题关键是熟练运用提取公因式和公式法进行因式分解3、【分析】原式提取a,再利用完全平方公式分解即可【详解】解:原式=a(m2-2mn+n2)=a(m-n)2,故答案为:a(m-n)2【点睛】本题考查了提公因式法与公式法

10、的综合运用,熟练掌握因式分解的方法是解本题的关键4、【分析】将该多项式拆项为,然后用平方差公式进行因式分解【详解】故答案为:【点睛】本题考查了因式分解,当要求在实数范围内进行因式分解时,分解的式子的结果一般要分到出现无理数为止5、直角三角形或等腰三角形【分析】将a4b2c2a2c2b40因式分解,然后分析不难得到三角形的形状【详解】解答:解:a4b2c2a2c2b40,(a2b2)(a2b2)c2(a2b2)0(a2b2)(a2b2c2)0a2b20或a2b2c20ABC为等腰三角形或直角三角形故答案为:直角三角形或等腰三角形【点睛】此题主要考查学生对因式分解法,等腰三角形的判定及勾股定理的综

11、合运用能力,关键是对等式进行合理的因式分解三、解答题1、(1)(2)-12【分析】(1)先提取a,再根据完全平方公式即可求解;(2)根据二次根式的运算法则即可求解【详解】解:(1)=(2)=-12【点睛】此题主要考查因式分解与二次根式的运算,解题的关键是熟知其运算法则2、【分析】先提公因式,然后利用十字相乘法分解因式,然后利用平方差公式分解因式即可求解【详解】解:原式【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等3、(1);(2);(3);(4)【分析】(1)原式直接用平方差公式进行因式分解即可;(2

12、)原式先提取公因式(x-y)再运用平方差公式进行因式分解即可;(3)原式直接运用完全平方公式进行因式分解即可;(4)原式先提取公因式-2a,再运用完全平方公式进行因式分解即可【详解】解:(1)9y2 - 16x2= = (2)x2(xy)+9(yx)= x2(xy)-9(xy)= = (3)a 2 -4a+4= = (4)2a312a218a= =【点睛】本题主要考查了因式分解,熟练掌握乘法公式是解答本题的关键4、(1);(2)【分析】(1)提取公因式然后利用完全平方公式进行因式分解即可;(2)提取公因式然后利用平方差公式进行因式分解即可【详解】解:(1)原式;(2)原式【点睛】此题考查了因式分解,涉及了平方差公式和完全平方公式,解题的关键是掌握因式分解的方法5、(1)0;(2)3x【分析】(1)根据题意,得=,合并同类项即可;(2)先提取公因式3x,后套用完全平方公式即可【详解】(1)2原式=2+-30(2)原式3x(4x4)3x【点睛】本题考查了幂的运算,整式的加减,因式分解,熟练掌握公式,灵活按照先提取公因式,后用公式的思路分解因式是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁