2021-2022学年度强化训练北师大版八年级数学下册第四章因式分解同步练习试卷.docx

上传人:知****量 文档编号:28173173 上传时间:2022-07-26 格式:DOCX 页数:15 大小:237.97KB
返回 下载 相关 举报
2021-2022学年度强化训练北师大版八年级数学下册第四章因式分解同步练习试卷.docx_第1页
第1页 / 共15页
2021-2022学年度强化训练北师大版八年级数学下册第四章因式分解同步练习试卷.docx_第2页
第2页 / 共15页
点击查看更多>>
资源描述

《2021-2022学年度强化训练北师大版八年级数学下册第四章因式分解同步练习试卷.docx》由会员分享,可在线阅读,更多相关《2021-2022学年度强化训练北师大版八年级数学下册第四章因式分解同步练习试卷.docx(15页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、北师大版八年级数学下册第四章因式分解同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列分解因式正确的是( )ABCD2、对于有理数a,b,c,有(a+100)b(a+100)c,下列说法正确的是

2、()A若a100,则bc0B若a100,则bc1C若bc,则a+bcD若a100,则abc3、不论x,y取何实数,代数式x24xy26y13总是( )A非负数B正数C负数D非正数4、下列各式从左到右进行因式分解正确的是()A4a24a+14a(a1)+1Bx22x+1(x1)2Cx2+y2(x+y)2Dx24y(x+4y)(x4y)5、把多项式分解因式,下列结果正确的是( )ABCD6、若一个三角形的三边长为a,b,c,且满足a22abb2acbc 0,则这个三角形是( )A直角三角形B等边三角形C等腰三角形D等腰直角三角形7、小东是一位密码爱好者,在他的密码手册中有这样一条信息:、依次对应下

3、列六个字:科、爱、勤、我、理、学,现将因式分解,其结果呈现的密码信息可能是( )A勤学B爱科学C我爱理科D我爱科学8、下列各式由左边到右边的变形中,是因式分解的为( )Aa(x+y)ax+ayB10x25x5x(2x1)Cx24x+4(x4)2Dx216+3x(x+4)(x4)+3x9、下列各式从左到右的变形属于因式分解的是()A(x+2)(x3)x2x6B6xy2x3yCx2+2x+1x(x+2)+1Dx29(x3)(x+3)10、下列各式由左到右的变形中,属于分解因式的是()Aa(m+n)am+anBa2b2c2(a+b)(ab)c2C10x25x5x(2x1)Dx216+6x(x+4)(

4、x4)+6x第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、因式分解:x+xyy=_2、在实数范围内分解因式:a23b2_3、因式分解:_4、把多项式分解因式的结果是_5、分解因式:_三、解答题(5小题,每小题10分,共计50分)1、下面是某同学对多项式(x2+2x)(x2+2x+2)+1进行因式分解的过程解:设x2+2x=y,原式 =y(y+2)+1 (第一步)=y2+2y+1 (第二步)=(y+1)2 (第三步)=(x2+2x+1)2 (第四步)(1)该同学第二步到第三步运用了因式分解的( )A提取公因式 B平方差公式C两数和的完全平方公式 D两数差的完全平方公式(

5、2)该同学在第四步将y用所设中的含x的代数式代换,这个结果是否分解到最后? (填“是”或“否”)如果否,直接写出最后的结果 (3)请你模仿以上方法尝试对多项式(x24x+3)(x24x+5)+1进行因式分解2、分解因式:(1);(2)3、将下列多项式分解因式:(1)(2)4、()先化简,再求值:,其中,;()分解因式: ; 5、把下列各式因式分解:(1) (2)-参考答案-一、单选题1、C【分析】根据因式分解的方法逐个判断即可【详解】解:A. ,原选项错误,不符合题意;B. ,原选项错误,不符合题意;C. ,正确,符合题意;D. ,原选项错误,不符合题意;故选:C【点睛】本题考查了因式分解,解

6、题关键是熟练运用提取公因式法和公式法进行因式分解2、A【分析】将等式移项,然后提取公因式化简,根据乘法等式的性质,求解即可得【详解】解:,或,即:或,A选项中,若,则正确;其他三个选项均不能得出,故选:A【点睛】题目主要考查利用因式分解化简等式,熟练掌握因式分解的方法是解题关键3、A【分析】先把原式化为,结合完全平方公式可得原式可化为从而可得答案.【详解】解:x24xy26y13 故选A【点睛】本题考查的是代数式的值,非负数的性质,利用完全平方公式分解因式,掌握“”是解本题的关键.4、B【分析】因式分解是将一个多项式写成几个整式乘积的形式,并且分解要彻底,根据完全平方公式和因式分解的定义逐项分

7、析判断即可【详解】解:A. 4a24a+1,故该选项不符合题意;B. x22x+1(x1)2,故该选项符合题意;C. x2+y2(x+y)2,故该选项不符合题意;D. x24y(x+4y)(x4y),故该选项不符合题意;故选B【点睛】本题考查了因式分解的定义,完全平方公式因式分解,理解因式分解的定义是解题的关键5、D【分析】利用公式即可得答案【详解】解:故选:D【点睛】此题考查了十字相乘法进行因式分解,解题的关键是掌握公式6、C【分析】先用完全平方公式和提取公因式法把等式左边因式分解,得出a,b,c之间的关系判断即可【详解】解:a22abb2acbc 0,即,故选:C【点睛】本题考查了因式分解

8、的应用,解题关键是熟练运用分组分解法把等式左边因式分解,得出三角形边之间的等量关系7、C【分析】利用平方差公式,将多项式进行因式分解,即可求解【详解】解:、依次对应的字为:科、爱、我、理,其结果呈现的密码信息可能是我爱理科故选:C【点睛】本题主要考查了多项式的因式分解,熟练掌握多项式的因式分解的方法是解题的关键8、B【分析】根据因式分解定义,把一个多项式化为几个整式的积的形式,对各选项进行一一分析即可【详解】解:A. a(x+y)ax+ay,多项式乘法,故选项A不合题意B. 10x25x5x(2x1)是因式分解,故选项B符合题意;C. x24x+4(x2)2因式分解不正确,故选项C不合题意;D

9、. x216+3x(x+4)(x4)+3x,不是因式分解,故选项D不符合题意故选B【点睛】本题考查因式分解,掌握因式分解的定义是解题关键9、D【分析】根据因式分解是把一个多项式化为几个整式的积的形式,可得答案【详解】解:A、是整式的乘法,故此选项不符合题意;B、不属于因式分解,故此选项不符合题意;C、没把一个多项式转化成几个整式积的形式,故此选项不符合题意;D、把一个多项式转化成几个整式积的形式,故此选项符合题意;故选:D【点睛】本题考查了因式分解的定义解题的关键是掌握因式分解的定义,因式分解是把一个多项式化为几个整式的积的形式,注意因式分解与整式乘法的区别10、C【分析】把一个多项式分解成几

10、个整式乘积的形式叫因式分解,根绝定义分析判断即可【详解】解:A、,该变形是去括号,不属于分解因式,该选项不符合题意;B、,等式右边不是几个整式乘积的形式,不符合题意;C、符合因式分解定义,该选项符合题意;D、,等式右边不是几个整式乘积的形式,不符合题意故选:C【点睛】本题考查因式分解的定义,牢记定义内容是解题的关键二、填空题1、【分析】综合利用提公因式法和完全平方公式进行因式分解即可得【详解】解:原式,故答案为:【点睛】本题考查了因式分解,熟练掌握因式分解的方法是解题关键2、(a+)(a)a)(a+)【分析】根据平方差公式因式分解,运用2次,注意分解要彻底【详解】a23b2a2()2(a+)(

11、a)【点睛】本题考查了根据平方差公式因式分解,实数,解题的关键是注意在实数范围内分解要彻底3、【分析】先提取公因式,再利用平方差公式计算即可得出答案【详解】解:【点睛】本题考查的是因式分解,比较简单,需要熟练掌握因式分解的方法以及步骤4、【分析】直接提取公因式3x,再利用平方差公式分解因式即可【详解】解:=故答案为:【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键5、【分析】根据提取公因式法,提取公因式即可求解【详解】解:,故答案为:【点睛】本题考查了因式分解,解题的关键是熟练掌握提取公因式法三、解答题1、(1)C;(2)否,;(3)【分析】(1)根据题意可知,

12、第二步到第三步用到了完全平方公式;(2)观察第四步可知,括号里面的还是一个完全平方公式还可以继续分解因式,由此求解即可;(3)仿照题意,设然后求解即可【详解】解:(1)根据题意可知,该同学第二步到第三步运用了因式分解的两数和的完全平方公式,故选C;(2)观察第四步可知,括号里面的还是一个完全平方公式还可以继续分解因式,分解分式的结果为:,故答案为:否,;(3)设 【点睛】本题主要考查了用完全平方公式分解因式,解题的关键在于能够准确理解题意2、(1);(2)【分析】(1)提取m,后用完全平方公式分解;(2)提取a-b,后用平方差公式分解【详解】解:(1)原式(2)原式【点睛】本题考查了因式分解,

13、熟练掌握先提后用公式的分解顺序是解题的关键3、(1)-5x(x-5);(2)xy(2x-y)2【分析】(1)提取公因式即可因式分解;(2)先提取公因式,进而根据完全平方公式进行因式分解即可【详解】解:(1)(2)【点睛】本题考查了提公因式法因式分解,公式法因式分解,熟练掌握因式分解的方法是解题的关键4、(),;();【分析】()括号里的使用完全平方公式与平方差公式得到单项式加减的形式,合并同类项;进行因式分解,利用除法法则进行化简,最后将的值代入,进而得出结果()先提公因式,再利用平方差公式进行分解先提公因式,再利用完全平方公式进行分解【详解】解:()原式当、时原式() 【点睛】本题考察了平方差公式、完全平方公式、因式分解、多项式与单项式的除法等知识点解题的关键与难点在于熟练掌握乘法公式,以及运算法则5、(1);(2)【分析】(1) 提取公因式,即可得到答案;(2)先把原式化为,再提取公因式,即可得到答案 【详解】(1),原式 ;(2) ,原式,【点睛】本题考查用提公因式法进行因式分解,找出题目中的公因式是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁