《2021-2022学年度强化训练北师大版九年级数学下册第三章-圆重点解析试卷(无超纲).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度强化训练北师大版九年级数学下册第三章-圆重点解析试卷(无超纲).docx(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版九年级数学下册第三章 圆重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,中,则等于( )ABCD2、矩形ABCD中,AB8,BC4,点P在边AB上,且AP3,如果P是以点P为圆心,P
2、D为半径的圆,那么下列判断正确的是()A点B、C均在P内B点B在P上、点C在P内C点B、C均在P外D点B在P上、点C在P外3、如图,已知AB是O的直径,CD是弦,若BCD36,则ABD等于()A54B56C64D664、已知的半径为5cm,点P到圆心的距离为4cm,则点P和圆的位置关系( )A点在圆内B点在圆外C点在圆上D无法判断5、如图,是的直径,、是上的两点,若,则( )A15B20C25D306、如图,四边形ABCD内接于,若,则的度数为( )A50B100C130D1507、如图,小王将一长为4,宽为3的长方形木板放在桌面上按顺时针方向做无滑动的翻滚,当第二次翻滚时被桌面上一小木块挡住
3、,此时木板与桌面成30角,则点A运动到A2时的路径长为()A10B4CD8、如图,在圆内接五边形中,则的度数为( )ABCD9、在直径为10cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽cm,则水的最大深度为( )A1cmB2cmC3cmD4cm10、如图,AB,BC,CD分别与O相切于E、F、G三点,且ABCD,BO3,CO4,则OF的长为()A5BCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、小明烘焙了几款不同口味的饼干,分别装在同款的圆柱形盒子中为区别口味,他打算制作“* 饼干”字样的矩形标签粘贴在盒子侧面为了获得较好的视觉效果,粘贴后标签上边缘所
4、在弧所对的圆心角为90(如图)已知该款圆柱形盒子底面半径为6 cm,则标签长度l应为_ cm(取3.1)2、如图,网格中的小正方形边长都是1,则以为圆心,为半径的和弦所围成的弓形面积等于_3、如图,AB是半圆O的直径,点D在半圆O上,C是弧BD上的一个动点,连接AC,过D点作于H连接BH,则在点C移动的过程中,线段BH的最小值是_4、如图,O是ABC的外接圆,半径为2cm,若BC2cm,则A的度数为 _5、如图,正六边形的边长为2,以为圆心,的长为半径画弧,得,连接,则图中阴影部分的面积为_三、解答题(5小题,每小题10分,共计50分)1、在一块大铁皮上裁剪如图所示圆锥形的烟囱帽,它的底面直径
5、为80cm,母线为50cm,求裁剪的面积2、如图是由小正方形组成的97网格,每个小正方形的顶点叫做格点,A,B,C三个格点都在圆上仅用无刻度的直尺在给定网格中完成画图,画图过程用虚线表示(1)画出该圆的圆心O,并画出劣弧的中点D;(2)画出格点E,使EA为O的一条切线,并画出过点E的另一条切线EF,切点为F3、如图,以点为圆心,长为直径作圆,在上取一点,延长至点,连接,过点作交的延长线于点(1)求证:是的切线;(2)若,求的长4、如图,射线AB和射线CB相交于点B,ABC(0180),且ABCB点D是射线CB上的动点(点D不与点C和点B重合),作射线AD,并在射线AD上取一点E,使AEC,连接
6、CE,BE(1)如图,当点D在线段CB上,90时,请直接写出AEB的度数;(2)如图,当点D在线段CB上,120时,请写出线段AE,BE,CE之间的数量关系,并说明理由;(3)当120,tanDAB时,请直接写出的值5、如图1,AB为圆O直径,点D为AB下方圆上一点,点C为弧ABD中点,连结CD,CA(1)若,求的度数;(2)如图2,过点C作于点H,交AD于点E,求(用含的代数式表示);(3)在(2)的条件下,若,求线段DE的长-参考答案-一、单选题1、C【分析】由题意直接根据圆周角定理进行分析即可得出答案.【详解】解:ABC和AOC是弧AC所对的圆周角和圆心角,ABC=AOC=.故选:C.【
7、点睛】本题考查圆周角定理,注意掌握同弧(等弧)所对的圆周角是圆心角的一半2、D【分析】如图所示,连接DP,CP,先求出BP的长,然后利用勾股定理求出PD的长,再比较PC与PD的大小,PB与PD的大小即可得到答案【详解】解:如图所示,连接DP,CP,四边形ABCD是矩形,A=B=90,AP=3,AB=8,BP=AB-AP=5,PB=PD,点C在圆P外,点B在圆P上,故选D【点睛】本题主要考查了点与圆的位置关系,勾股定理,矩形的性质,熟知用点到圆心的距离与半径的关系去判断点与圆的位置关系是解题的关键3、A【分析】根据圆周角定理得到ADB90,ABCD36,然后利用互余计算ABD的度数【详解】AB是
8、O的直径,ADB90,DABBCD36,ABDADBDAB,即ABD90DAB903654故选:A【点睛】本题考查了圆周角定理:在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半半圆(或直径)所对的圆周角是直角,90的圆周角所对的弦是直径4、A【分析】直接根据点与圆的位置关系进行解答即可【详解】解:O的半径为5cm,点P与圆心O的距离为4cm,5cm4cm,点P在圆内故选:A【点睛】本题考查了点与圆的位置关系,当点到圆心的距离小于半径的长时,点在圆内;当点到圆心的距离等于半径的长时,点在圆上;当点到圆心的距离大于半径的长时,点在圆外5、C【分析】根据圆周角定理得到BDC
9、的度数,再根据直径所对圆周角是直角,即可得到结论【详解】解:BOC=130,BDC=BOC=65,AB是O的直径,ADB=90,ADC=90-65=25,故选:C【点睛】本题考查了圆周角定理,熟练掌握圆周角定理是解题的关键6、B【分析】根据圆内接四边形的性质求出A的度数,根据圆周角定理计算即可【详解】解:四边形ABCD内接于O,A+DCB=180,DCB=130,A=50,由圆周角定理得,=2A=100,故选:B【点睛】本题考查的是圆内接四边形的性质和圆周角定理,掌握圆内接四边形的对角互补是解题的关键7、C【分析】根据题意可得:第一次转动的路径是以点B为圆心,AB长为半径的弧长,此时圆心角 ,
10、第二次转动的路径是以点C为圆心,A1C长为半径的弧长,此时圆心角 ,再由弧长公式,即可求解【详解】解:如图,根据题意得: , ,第一次转动的路径是以点B为圆心,AB长为半径的弧长,此时圆心角 , ,第二次转动的路径是以点C为圆心,A1C长为半径的弧长,此时圆心角 , ,点A运动到A2时的路径长为 故选:C【点睛】本题主要考查了求弧长,熟练掌握扇形的弧长公式是解题的关键8、B【分析】先利用多边的内角和得到,可计算出,然后根据圆内接四边形的性质求出的度数即可.【详解】解:五边形的内角和为,四边形为的内接四边形,.故选:B.【点睛】本题主要考查了多边形的内角和与圆内接四边形的性质,掌握圆内接四边形的
11、性质是解答本题的关键.9、B【分析】连接OB,过点O作OCAB于点D,交O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而得出CD的长即可【详解】解:连接OB,过点O作OCAB于点D,交O于点C,如图所示:AB=8cm,BD=AB=4(cm),由题意得:OB=OC=5cm,在RtOBD中,OD=(cm),CD=OC-OD=5-3=2(cm),即水的最大深度为2cm,故选:B【点睛】本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键10、D【分析】连接OF,OE,OG,根据切线的性质及角平分线的判定可得OB平分,OC平分,利用平行线的性质及
12、角之间的关系得出,利用勾股定理得出,再由三角形的等面积法即可得【详解】解:连接OF,OE,OG,AB、BC、CD分别与相切,且,OB平分,OC平分,SOBC=12OBOC=12BCOF,故选:D【点睛】题目主要考查圆的切线性质,角平分线的判定和性质,平行线的性质,勾股定理等,理解题意,作出辅助线,综合运用这些知识点是解题关键二、填空题1、9.3【分析】根据弧长公式进行计算即可,【详解】解:粘贴后标签上边缘所在弧所对的圆心角为90,底面半径为6 cm,cm,故答案为:【点睛】本题考查了弧长公式,牢记弧长公式是解题的关键2、【分析】根据勾股定理求出半径AO的长度,然后根据弓形面积扇形OAB的面积-
13、三角形OAB的面积,求解即可【详解】解:由勾股定理得,由网格的性质可得,是等腰直角三角形,和弦所围成的弓形面积故答案为:【点睛】此题考查了网格的特点和性质,勾股定理,扇形面积公式等知识,解题的关键是正确分析出弓形面积扇形面积-三角形OAB的面积3、#【分析】连接,取的中点,连接,由题可知点在以为圆心,为半径的圆上,当、三点共线时,最小;求出,在中,所以,即为所求【详解】解:连接,取的中点,连接,点在以为圆心,为半径的圆上,当、三点共线时,最小,是直径,在中,故答案为:【点睛】本题考查点的运动轨迹,勾股定理,解题的关键是能够根据点的运动情况,确定点的运动轨迹4、30度【分析】连接OB和OC,证明
14、OBC为等边三角形,得到BOC的度数,再利用圆周角定理得出A【详解】解:连接OB和OC,圆O半径为2cm,BC=2cm,OB=OC=BC,OBC为等边三角形,BOC=60,A=BOC=30,故答案为:30【点睛】本题考查了圆周角定理和等边三角形的判定和性质,解题的关键是正确的作出辅助线5、【分析】由正六边形ABCDEF的边长为2,可得AB=BC=2,ABC=BAF=120,进而求出BAC=30,CAE=60,过B作BHAC于H,由等腰三角形的性质和含30直角三角形的性质得到AH=CH,BH=1,在RtABH中,由勾股定理求得AH=,得到AC=2,根据扇形的面积公式即可得到阴影部分的面积【详解】
15、解:正六边形ABCDEF的边长为2, =120,ABC+BAC+BCA=180,BAC=(180-ABC)=(180-120)=30,过B作BHAC于H,AH=CH,BH=AB=2=1,在RtABH中,AH= =,AC=2 ,同理可证,EAF=30,CAE=BAF-BAC-EAF=120-30-30=60, 图中阴影部分的面积为2,故答案为:【点睛】本题考查的是正六边形的性质和扇形面积的计算、等腰三角形的性质、勾股定理,掌握扇形面积公式是解题的关键三、解答题1、2000 【分析】利用圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长,则利用扇形的面积公式计算
16、出圆锥的侧面积即可【详解】解:根据题意,圆锥的侧面积为:8050=2000(cm2)【点睛】本题考查了圆锥的计算:圆锥的侧面展开图为一扇形,这个扇形的弧长等于圆锥底面的周长,扇形的半径等于圆锥的母线长2、(1)作图见详解;(2)作图见详解【分析】(1)四边形ABCG为矩形,连接AC,BG交点即为圆心O;观察图发现在线段AB中间的一个小正方形方格内,连接其对角线,交于点H,然后连接OH交圆O于点D,即为所求;(2)在方格中利用全等三角形可得RtACGRtEAD,由其性质得出+CAG=90,且点E恰好在格点上,即为所求;连接OU,EU,JT,MT,RM,SA,利用全等三角形的性质及平行线的性质可得
17、SAEO,根据垂直于弦的直径同时平分弦,得出点F即为点A关于OE的对称点,即为所求【详解】解:(1)如图所示:四边形ABCG为矩形,连接AC,BG交点即为圆心O;观察图发现在线段AB中间的一个小正方形方格内,连接其对角线,交于点H,然后连接OH交圆O于点D,即为所求;(2)如图所示:在RtACG与RtEAD中,AG=DE=4AGC=EDACG=AD=3,RtACGRtEAD,ACG=DAE,ACG+CAG=90,+CAG=90,CAAE,点E恰好在格点上,即为所求;如图所示:连接OU,EU,JT,MT,RM,SA,由图可得:RtOUE与RtMTJ中,EU=JTEUO=JTMOU=MT,RtOU
18、ERtMTJ,OEU=TJM,EOJM,同理可得:JMT=RMO=PAS,MRSA,JMT+OMJ=90,OMR+OMJ=90,RMMJ,SAMJ,SAEO,与圆O的交点F即为所求(点F即为点A关于OE的对称点)【点睛】题目主要考查直线与圆的作图能力,全等三角形的应用,平行线的性质等,在方格中找出全等的三角形是解题关键3、(1)证明见解析;(2)【分析】(1)连接,先根据圆周角定理可得,再根据等腰三角形的性质可得,从而可得,然后根据角的和差可得,最后根据圆的切线的判定定理即可得证;(2)设的半径为,先在中,利用勾股定理可求出的值,从而可得的长,再根据相似三角形的判定证出,然后根据相似三角形的性
19、质即可得【详解】证明:(1)如图,连接,是的直径,即,又是的半径,是的切线;(2)设的半径为,则,在中,即,解得,在和中,即,解得【点睛】本题考查了圆周角定理、圆的切线的判定定理、相似三角形的判定与性质等知识点,熟练掌握圆的切线的判定定理和相似三角形的判定是解题关键4、(1)45;(2)AEBE+CE,理由见解析;(3)或【分析】(1)连接AC,证A、B、E、C四点共圆,由圆周角定理得出AEBACB,证出ABC是等腰直角三角形,则ACB45,进而得出结论;(2)在AD上截取AFCE,连接BF,过点B作BHEF于H,证ABFCBE(SAS),得出ABFCBE,BFBE,由等腰三角形的性质得出FH
20、EH,由三角函数定义得出FHEHBE,进而得出结论;(3)分两种情况,由(2)得FHEHBE,由三角函数定义得出AH3BHBE,分别表示出CE,进而得出答案【详解】解:(1)连接AC,如图所示:90,ABC,AEC,ABCAEC90,A、B、E、C四点共圆,AEBACB,ABC90,ABCB,ABC是等腰直角三角形,ACB45,AEB45;(2)AEBE+CE,理由如下:在AD上截取AFCE,连接BF,过点B作BHEF于H,如图所示:ABCAEC,ADBCDE,180ABCADB180AECCDE,AC,在ABF和CBE中,ABFCBE(SAS),ABFCBE,BFBE,ABF+FBDCBE+
21、FBD,ABDFBE,ABC120,FBE120,BFBE,BFEBEF,BHEF,BHE90,FHEH,在RtBHE中,AEEF+AF,AFCE,;(3)分两种情况:当点D在线段CB上时,在AD上截取AFCE,连接BF,过点B作BHEF于H,如图所示,由(2)得:FHEHBE,tanDAB,;当点D在线段CB的延长线上时,在射线AD上截取AFCE,连接BF,过点B作BHEF于H,如图所示,同得:,;综上所述,当120,时,的值为或【点睛】本题是三角形综合题目,考查了全等三角形的判定与性质、等腰直角三角形的判定与性质、等腰三角形的判定与性质、四点共圆、圆周角定理、三角函数定义等知识;本题综合性
22、强,构造全等三角形是解题的关键5、(1)35;(2);(3)【分析】(1)连结AD,BC,可得,再由C为弧ABD中点,可得到从而得到,再由AB为圆O直径,得到 ,即可求解;(2)连BC,可得,从而得到,再由,即可求解;(3)连接CO并延长交AD于F,由垂径定理推论,可得,再由(2),从而得到,进而得到 ,再由勾股定理可得,再由可得,解得,即可求解【详解】解:(1)连结AD,BC,C为弧ABD中点, ,AB为圆O直径, , ;(2)连BC,点C为弧ABD中点, , AB为直径,又, ,;(3)连接CO并延长交AD于F,C为弧ABD中点,由(2),由, , , , ,即,【点睛】本题主要考查了圆周角定理,垂径定理相似三角形的性质和判定等知识,熟练掌握相关知识点是解题的关键