《2021-2022学年度沪科版八年级下册数学综合测试-卷(Ⅱ)(含答案详解).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度沪科版八年级下册数学综合测试-卷(Ⅱ)(含答案详解).docx(21页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 沪科版八年级下册数学综合测试 卷() 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、某公司欲招收职员一名,从学历、经验和工作态度三个方面对甲、乙、丙、丁四名
2、应聘者进行了初步测试,测试成绩如表:应聘者项目甲乙丙丁学历8976经验6488工作态度7765如果将学历、经验和工作态度三项得分依次按30%,30%,40%的比例确定各人的最终得分,那么最终得分最高的是( )A甲B乙C丙D丁2、小颖同学参加学校举办的“抗击疫情,你我同行”主题演讲比赛,她的演讲内容、语言表达和形象风度三项得分分别为86分、90分、80分,若这三项依次按照50%,40%,10%的百分比确定成绩,则她的成绩为( )A84分B85分C86分D87分3、一元二次方程的根的情况是( )A有两个不相等的实数根B有两个相等的实数根C无实数根D只有一个实数根4、一个直角三角形有两边长为3cm,
3、4cm,则这个三角形的另一边为( )A5cmBcmC7cmD5cm或cm5、已知等腰三角形的两边长分别是一元二次方程的两根,则该等腰三角形的周长为( )A9B12C2或5D9或126、下列条件中,不能判定四边形是平行四边形的是( )A两组对边分别相等B一组对边平行,另一组对边相等C两组对角分别相等D一组对边平行且相等7、下面各命题都成立,那么逆命题成立的是( )A邻补角互补B全等三角形的面积相等C如果两个实数相等,那么它们的平方相等D两组对角分别相等的四边形是平行四边形8、以下列各组数为三边的三角形中不是直角三角形的是( )A1、2B6、10、8C3、4、5D6、5、49、若0是关于x的一元二
4、次方程mx25xm2m0的一个根,则m等于()A1B0C0或1D无法确定10、将方程配方,则方程可变形为( ) 线 封 密 内 号学级年名姓 线 封 密 外 ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、一个三角形的两边长分别为3和5,其第三边是方程13x+400的根,则此三角形的周长为 _2、如图在正方形ABCD中,EAF的两边分别交CB、DC延长线于E、F点且EAF45,如果BE1,DF7,则EF_3、已知一个多边形的每一个外角都是,则这个多形是_边形4、如图,已知中,动点M满足,将线段绕点C顺时针旋转得到线段,连接,则的最小值为_5、已知一直角三角形的两
5、直角边长分别为6和8,则斜边上中线的长度是_三、解答题(5小题,每小题10分,共计50分)1、计算:2、化简或运算:(1);(2)3、如图,已知在RtABC中,ACB90,AC8,BC16,D是AC上的一点,CD3点P从B点出发沿射线BC方向以每秒2个单位的速度向右运动设点P的运动时间为连接AP(1)当t3秒时,求AP的长度(结果保留根号);(2)当点P在线段AB的垂直平分线上时,求t的值;(3)过点D作DEAP于点E在点P的运动过程中,当t为何值时,能使DECD?4、如图,/,AC平分,且交BE于点C(1)作的角平分线交AD于点F(要求:尺规作图,不写作法和结论,保留作图痕迹);(2)根据(
6、1)中作图,连接CF,求证:四边形ABCF是菱形5、近几年,中学体育课程改革受到全社会的广泛关注,体育与健康课程标准中明确指出:“健康体魄是青少年为祖国和人民服务的基本前提”某校为了解九年级学生的锻炼情况,随机抽取一班与 线 封 密 内 号学级年名姓 线 封 密 外 二班各10名学生进行一分钟跳绳测试,若一分钟跳绳个数为m,规定“不合格”,“及格”,“良好”,“优秀”对于学生一分钟跳绳个数相关数据收集、整理如下:一分钟跳绳次数(单位:个)一班:204 198 190 190 188 198 180 173 163 198二班:203 200 190 186 200 183 169 200 15
7、9 190数据分析:两组样本数据的平均数、众数、中位数如下表所示:班级平均数众数中位数一班188.2198190二班188200b二班学生一分钟跳绳成绩扇形统计图应用数据:(1)根据图表提供的信息,_(2)根据以上数据,你认为该年级一班与二班哪个班的学生一分钟跳绳成绩更好?请说明理由(写出一条理由即可);(3)该校九年级共有学生2000人,请估计一分钟跳绳成绩为“优秀”的共有多少人?-参考答案-一、单选题1、A【分析】根据图表数据利用计算加权平均数的方法直接求出甲、乙、丙、丁四名应聘者的加权平均数,两者进行比较即可得出答案【详解】解:甲的最终得分:830%+630%+740%=7,乙的最终得分
8、:930%+430%+740%=6.7,丙的最终得分:730%+830%+640%=6.9,丁的最终得分:630%+830%+540%=6.2,甲丙乙丁,故选A.【点睛】本题考查加权平均数的计算,掌握加权平均数的计算方法是解题的关键2、D【分析】根据加权平均数的计算公式列出算式,再进行计算即可得出答案【详解】解:根据题意得:8650%+9040%+8010%=43+36+8=87(分)故选:D【点睛】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查的是加权平均数的求法,本题易出现的错误是求86,90,80这三个数的算术平均数,对平均数的理解不正确3、A【分析】根据根的判别式即可求出答案
9、【详解】解:原方程化为:,故选:A【点睛】本题考查一元二次方程,解题的关键是熟练运用一元二次方程的判别式,本题属于基础题型4、D【分析】根据勾股定理解答即可【详解】解:设这个三角形的另一边为xcm,若x为斜边时,由勾股定理得:,若x为直角边时,由勾股定理得:,综上,这个三角形的另一边为5cm或cm,故选:D【点睛】本题考查勾股定理,利用分类讨论思想是解答的关键5、B【分析】因式分解法求得方程的根,根据等腰三角形的性质,确定三边,在三角形存在的前提下,计算周长【详解】,等腰三角形的三边长为2,2,5,不满足三边关系定理,舍去;或2,5,5,满足三边关系定理,等腰三角形的周长为2+5+5=12,故
10、选B【点睛】本题考查了一元二次方程的解法,三角形的三边关系定理,等腰三角形的性质,熟练掌握一元二次方程的解法,三角形三边关系定理是解题的关键6、B【分析】直接利用平行四边形的判定定理判定,即可求得答案;注意掌握排除法在选择题中的应用【详解】解:A、两组对边分别相等是平行四边形;故本选项不符合题意;B、一组对边平行,另一组对边相等的四边形是平行四边形或等腰梯形;故本选项符合题意C、两组对角分别相等的四边形是平行四边形;故本选项不符合题意;D、一组对边平行且相等是平行四边形;故本选不符合题意; 线 封 密 内 号学级年名姓 线 封 密 外 故选:B【点睛】此题考查了平行四边形的判定注意熟记平行四边
11、形的判定定理是解此题的关键7、D【分析】逐个写出逆命题,再进行判断即可【详解】A选项,逆命题:互补的两个角是邻补角互补的两个角顶点不一定重合,该逆命题不成立,故A选项错误;B选项,逆命题:面积相等的两个三角形全等底为4高为6的等腰三角形和底为6高为4的等腰三角形面积相等,但这两个等腰三角形不全等,该逆命题不成立,故B选项错误;C选项,逆命题:如果两个实数的平方相等,那么这两个实数相等这两个实数也有可能互为相反数,该逆命题不成立,故C选项错误;D选项,逆命题:平行四边形是两组对角分别相等的四边形这是平行四边形的性质,该逆命题成立,故D选项正确故答案选:D【点睛】本题考查判断命题的真假,写一个命题
12、的逆命题把一个命题的条件和结论互换后的新命题就是这个命题的逆命题8、D【分析】利用勾股定理的逆定理逐一分析各选项即可得到答案.【详解】解:A、因为 ,所以是直角三角形,故本选项不符合题意;B、因为 ,所以是直角三角形,故本选项不符合题意;C、因为 ,所以是直角三角形,故本选项不符合题意;D、因为,所以不是直角三角形,故本选项符合题意;故选:D【点睛】本题考查的是勾股定理的逆定理的应用,掌握“勾股定理的逆定理:若 则以为边的三角形是直角三角形”是解本题的关键.9、A【分析】根据一元二次方程根的定义,将代入方程解关于的一元二次方程,且根据一元二次方程的定义,二次项系数不为0,即可求得的值【详解】解
13、:0是关于x的一元二次方程mx25xm2m0的一个根,且解得故选A【点睛】本题考查了一元二次方程根的定义,一元二次方程的定义,因式分解法解一元二次方程,注意是解题的关键一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程10、C【分析】将常数项移到方程的右边,两边都加上一次项系数一半的平方配成完全平方式后即可得出答案 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:,则,即,故选:C【点睛】本题主要考查解一元二次方程的能力,熟练掌握解一元二次方程的几种常用方法
14、:直接开平方法、因式分解法、公式法、配方法,结合方程的特点选择合适、简便的方法是解题的关键二、填空题1、13【分析】先求13x+400的根,根据三角形存在性,后计算周长【详解】13x+400,=0,当第三边为5时,三边为3,5,5,三角形存在,三角形的周长为3+5+5=13;当第三边为8时,三边为3,5,8,且3+5=8,三角形不存在,三角形的周长为13;故答案为:13【点睛】本题考查了三角形的存在性,一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键2、6【分析】根据题意把ABE绕点A逆时针旋转90到AD,交CD于点G,证明AEFAGF即可求得EFDFBE716【详解】解:如图,把A
15、BE绕点A逆时针旋转90到DA,交CD于点G,由旋转的性质可知,AGAE,DGBE,DAGBAE,EAF45,DAG+BAF45,又BAD90,GAF45,在AEF和AGF中,AEFAGF(SAS)EFGF, 线 封 密 内 号学级年名姓 线 封 密 外 BE1,DF7,EFGFDFDGDFBE716.故答案为:6【点睛】本题主要考查正方形的性质及全等三角形的判定和性质,构造全等三角形是解题的关键,注意旋转性质的应用3、八【分析】根据多边形的外角和等于360进行解答即可得【详解】解:,故答案为:八【点睛】本题考查了多边形的外角和,解题的关键是熟记多边形的外角和等于4、#【分析】证明AMCBNC
16、,可得,再根据三角形三边关系得出当点N落在线段AB上时,最小,求出最小值即可【详解】解:线段绕点C顺时针旋转得到线段,AMCBNC,的最小值为;故答案为:【点睛】本题考查了全等三角形的判定与性质,勾股定理,解题关键是证明三角形全等,得出,根据三角形三边关系取得最小值5、5【分析】直角三角形中,斜边长为斜边中线长的2倍,所以求斜边上中线的长求斜边长即可【详解】解:在直角三角形中,两直角边长分别为6和8,则斜边长10,斜边中线长为105,故答案为 5【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,勾股定理,根据勾股定理求得斜边长是解题的关键三、解答题1、【分析】 线 封 密 内 号学级年名
17、姓 线 封 密 外 先分母有理化和化简二次根式,再依据运算法则计算即可【详解】解:原式=【点睛】本题考查了二次根式的运算,解题关键是熟练运用二次根式的运算法则进行计算2、(1)(2)3【分析】(1)先通分变成同分母的分式相减,再根据同分母的分式相减法则求出答案即可;(2)先算乘方,再算开方,最后算加减即可(1)解:原式;(2)解:原式4()333【点睛】本题考查了分式的加减,分数指数幂,实数的运算等知识点,能灵活运用知识点进行计算是解此题的关键3、(1)(2)5(3)t为5或11【分析】(1)根据动点的运动速度和时间先求出PC,再根据勾股定理即可求解;(2)当点P在线段AB的垂直平分线上时,则
18、PA=PB,再根据勾股定理列方程即可求解;(3)根据动点运动的不同位置利用勾股定理即可求解(1)根据题意,得BP=2t,PC=162t=1623=10,AC=8,在RtAPC中,根据勾股定理,得:AP2 线 封 密 内 号学级年名姓 线 封 密 外 答:AP的长为;(2)当点P在线段AB的垂直平分线上时,则PA=PB,BP=2t,PC=162t, AC=8,PA=PB=2t,ACB90,则,即,解得t=5;答:当点P在线段AB的垂直平分线上时t=5;(3)若P在C点的左侧,CP=162t,DE=DC=3,AD=8-3=5,AP=,解得:t=5,t=11(舍去);若P在C点的右侧,CP=2t16
19、,DE=DC=3,AD=8-3=5同理:AP=,解得:t=5(舍去),t=11;答:当t为5或11时,能使DE=CD【点晴】本题考查了等腰三角形的性质、勾股定理,根据求一个数的平方根解方程,解决本题的关键是动点运动到不同位置时分类讨论4、(1)见解析(2)见解析 线 封 密 内 号学级年名姓 线 封 密 外 【分析】(1)根据尺规作角平分线的方法作图即可;(2)根据角平分线定义和平行线性质证明BAC=ACB,AFB=CBF,再根据三角形的等角对等边证得AF=AB=BC,然后根据平行四边形的判定和菱形的判定证明即可(1)解:如图,射线BF即为所求作的角平分线;(2)解:AC平分BAD,BF平分A
20、BE,BAC=FAC,ABF=CBF,ADBE,ACB=FAC,AFB=CBF,BAC=ACB,AFB=ABF,AB=BC,AB=AF,BC=AF,又AFBC,四边形ABCF是平行四边形,又AB=BC,四边形ABCF是菱形【点睛】本题考查尺规作图-作角平分线、角平分线的定义、平行线的性质、等腰三角形的判定、菱形的判定,熟练掌握相关知识的联系与运用是解答的关键5、(1)270(2)我认为一班学生一分钟跳绳成绩更好,理由见解析(3)500人【分析】(1)根据优秀率的计算公式及中位数的定义分别求出a、b的值再计算即可;(2)利用表格中的平均数比较得到一班成绩较好;(3)用总人数2000乘以两个班级总
21、的优秀率即可(1)解:二班优秀的有4人,成绩分别为:203,200,200,200优秀率为a%=,a=40;一班成绩由低到高排列为163,173,180,188,190,190,198,198,198,204,居中的两个数为190,190,故中位数b=190,故答案为:270;(2)解:我认为一班学生一分钟跳绳成绩更好,理由如下:一班学生一分钟跳绳平均数188.2大于二班学生一分钟跳绳平均数188,所以一班学生一分钟跳绳成绩更好(3) 线 封 密 内 号学级年名姓 线 封 密 外 解:由一分钟跳绳次数得,一班二班优秀的占比为,所以九年级一分钟跳绳优秀的学生大约为人【点睛】此题考查了统计运算,掌握优秀率的计算公式,中位数的定义,利用数据分析得到结论,计算总体中某部分的数量,能读懂统计表并正确分析数据是解题的关键