《2021-2022学年基础强化北师大版八年级数学下册第六章平行四边形专项练习试卷(名师精选).docx》由会员分享,可在线阅读,更多相关《2021-2022学年基础强化北师大版八年级数学下册第六章平行四边形专项练习试卷(名师精选).docx(23页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第六章平行四边形专项练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列多边形中,内角和为540的是( )ABCD2、如图,在ABC中,AC=BC=8,BCA=60,直线ADBC
2、于点D,E是AD上的一个动点,连接EC,将线段EC绕点C按逆时针方向旋转60得到FC,连接DF,则在点E的运动过程中,DF的最小值是( )A1B1.5C2D43、若一个多边形的每一个内角均为120,则下列说法错误的是( )A这个多边形的内角和为720B这个多边形的边数为6C这个多边形是正多边形D这个多边形的外角和为3604、在ABCD中,AC=24,BD=38,AB=m,则m的取值范围是( )A24m39B14m62C7m31D7m125、正多边形的一个内角等于144,则该多边形是( )A正八边形B正九边形C正十边形D正十一边形6、如图,在四边形中,ABCD,添加下列一个条件后,一定能判定四边
3、形是平行四边形的是( )ABCD7、如图,的对角线交于点O,E是CD的中点,若,则的值为( )A2B4C8D168、如图,五边形ABCDE是正五边形,若l1l2,则12的值是( )A108B36C72D1449、已知正多边形的一个外角等于40,则这个正多边形的内角和的度数为_A360B1260C1120D116010、如图,在ABCD中,AD=2AB,F是AD的中点,作CEAB于E,在线段AB上,连接EF、CF则下列结论:BCD=2DCF;ECF=CEF;SBEC=2SCEF;DFE=3AEF,其中一定正确的是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1
4、、一个多边形的边数增加2,则内角和与外角和增加的度数之和是_度2、如图,是三角形ABC的不同三个外角,则_3、如图,的度数为_4、一个三角形三边长之比为456,三边中点连线组成的三角形的周长为30cm,则原三角形最大边长为_cm5、如果一个多边形的内角和为1440,则这个多边形的边数为_;正八边形的每个内角为_度三、解答题(5小题,每小题10分,共计50分)1、化简、求解(1)若a,b,c是ABC的三边的长,化简|a-b-c|+|b-c-a|+|c+a-b|(2)已知一正多边形的内角与其相邻的外角的比为3:1,求该多边形的边数2、在等腰直角三角形ABC中,点E、F分别为AB,AC的中点,H为线
5、段EF上一动点(不与点E,F重合),将线段AH绕点A逆时针方向旋转90得到AG,连接GC,HB(1)如图1,求证:;(2)如图2,连接GF,HG,HG交AF于点Q点H在运动的过程中,求证:;若,当为等腰三角形时,EH的长为_3、如图,ABCD是平行四边形,AD4,AB5,点A的坐标为(2,0),求点B、C、D的坐标4、如图,一个多边形纸片按图示的剪法剪去一个内角后,得到一个内角和为2520的新多边形,求原多边形的边数5、如图,在ABC中,点A(3,1),B(1,1),C(0,3)(1)将ABC绕点O顺时针旋转90,点A,B,C的对应点A1,B1,C1均落在格点上,画出旋转后的A1B1C1,并直
6、接写出点A1,B1,C1的坐标;(2)将ABC绕点A旋转后,B,C对应点B2,C2均落在格点上,画出旋转后的AB2C2,并直接写出点B2,C2的坐标;(3)若线段B1C1绕某点旋转后恰好与线段B2C2重合,直接写该点的坐标为 -参考答案-一、单选题1、C【分析】根据多边形内角和公式求解即可【详解】解:A、三角形的内角和是,不符合题意;B、四边形的内角和是,不符合题意;C、五边形的内角和是,符合题意;D、六边形的内角和是,不符合题意故选:C【点睛】此题考查了多边形的内角和,解题的关键是熟练掌握多边形内角和公式n边形的内角的和等于:(n大于等于3且n为整数)2、C【分析】取线段AC的中点G,连接E
7、G,根据等边三角形的性质以及角的计算即可得出CD=CG以及FCD=ECG,由旋转的性质可得出EC=FC,由此即可利用全等三角形的判定定理SAS证出FCDECG,进而即可得出DF=GE,再根据点G为AC的中点,即可得出EG的最小值,此题得解【详解】解:取线段AC的中点G,连接EG,如图所示AC=BC=8,BCA=60,ABC为等边三角形,且AD为ABC的对称轴,CD=CG=AB=4,ACD=60,ECF=60,FCD=ECG,在FCD和ECG中,FCDECG(SAS),DF=GE当EGBC时,EG最小,点G为AC的中点,此时EG=DF=CD=BC=2故选:C【点睛】本题考查了等边三角形的性质以及
8、全等三角形的判定与性质,三角形中位线的性质,解题的关键是通过全等三角形的性质找出DF=GE,本题属于中档题,难度不大,解决该题型题目时,根据全等三角形的性质找出相等的边是关键3、C【分析】先根据多边形的外角和求出这个多边形的边数,再根据多边形的内角和、正多边形的定义即可得【详解】解:多边形的每一个内角均为,这个多边形的每一个外角均为,这个多边形的边数为,则选项B说法正确;这个多边形的内角和为,则选项A说法正确;多边形的外角和为,选项D说法正确;各边相等,各内角也相等的多边形叫做正多边形,选项C说法错误;故选:C【点睛】本题考查了多边形的内角和与外角和、正多边形的定义,熟练掌握多边形的内角和与外
9、角和是解题关键4、C【分析】作出平行四边形,根据平行四边形的性质可得,然后在中,利用三角形三边的关系即可确定m的取值范围【详解】解:如图所示:四边形ABCD为平行四边形,在中,即,故选:C【点睛】题目主要考查平行四边形的性质及三角形三边的关系,熟练掌握平行四边形的性质及三角形三边关系是解题关键5、C【分析】根据多边形内角与外角互补,先求出一个外角,正多边形的外角和等于360,又可表示成36n,列方程可求解:【详解】解: 设所求正多边形边数为n,正多边形的一个内角等于144,正多边形的一个外角=180-144=36,则36n=360,解得n=10故选:C【点睛】本题考查正多边形内角与外角关系,正
10、多边形外角和问题,简单一元一次方程,掌握正多边形内角与外角关系,正多边形外角和问题,简单一元一次方程,利用外角和列方程是解题关键6、C【分析】由平行线的性质得,再由,得,证出,即可得出结论【详解】解:一定能判定四边形是平行四边形的是,理由如下:,又,四边形是平行四边形,故选:C【点睛】本题考查了平行四边形的判定,解题的关键是熟练掌握平行四边形的判定,证明出7、B【分析】根据平行四边形的性质可得,SBOC=SAOD=SCOD=SAOB=8,再根据三角形的中线平分三角形的面积可得根据三角形的中线平分三角形的面积可得SDOE=4,进而可得答案【详解】解:四边形ABCD是平行四边形,SBOC=SAOD
11、=SCOD=SAOB=8,点E是CD的中点,SDOE=SCOD=4,故选:B【点睛】此题主要考查了平行四边形的性质,以及三角形中线的性质,掌握平行四边形的性质,三角形的中线平分三角形的面积是解答本题的关键8、C【分析】过点B作l1的平行线BF,利用平行线的性质推出CBF+1=180,CBF+2=108,两个式子相减即可【详解】解:过点B作l1的平行线BF,则l1l2BF,l1l2BF,ABF=2,CBF+1=180,五边形ABCDE是正五边形, ABF+CBF=CBF+2=108,-得1-2=72,故选C【点睛】本题主要考查了平行线的性质以及正多边形的内角问题,解题的关键是通过作辅助线,搭建角
12、之间的关系桥梁9、B【分析】根据正多边形的内角和计算即可;【详解】正n边形的每个外角相等,且其和是,;故选B【点睛】本题主要考查了正多边形的外角和与内角和,准确计算是解题的关键10、B【分析】根据易得DF=CD,由平行四边形的性质ADBC即可对作出判断;延长EF,交CD延长线于M,可证明AEFDMF,可得EF=FM,由直角三角形斜边上中线的性质即可对作出判断;由AEFDMF可得这两个三角形的面积相等,再由MCBE易得SBEC2SEFC ,从而是错误的;设FEC=x,由已知及三角形内角和可分别计算出DFE及AEF,从而可判断正确与否【详解】F是AD的中点,AF=FD,在ABCD中,AD=2AB,
13、AF=FD=CD,DFC=DCF,ADBC,DFC=FCB,DCF=BCF,BCD=2DCF,故正确;延长EF,交CD延长线于M,四边形ABCD是平行四边形,ABCD,A=MDF,F为AD中点,AF=FD,在AEF和DFM中, ,AEFDMF(ASA),FE=MF,AEF=M,CEAB,AEC=90,AEC=ECD=90, FM=EF,FC=FE,ECF=CEF,故正确;EF=FM,SEFC=SCFM , MCBE,SBEC2SEFC , 故SBEC=2SCEF , 故错误; 设FEC=x,则FCE=x,DCF=DFC=90x,EFC=1802x,EFD=90x+1802x=2703x,AEF
14、=90x,DFE=3AEF,故正确,故选:B 【点睛】本题考查了平行四边形的性质,全等三角形的判定与性质,直角三角形斜边上中线的性质,三角形的面积等知识,构造辅助线证明三角形全等是本题的关键和难点二、填空题1、【分析】利用n边形的内角和公式且为整数,多边形外角和为即可解决问题【详解】解:根据边形的内角和可以表示成,可以得到增加条边时,边数变为,则内角和是,因而内角和增加:,外角和不变即:一个多边形的边数增加,则内角和与外角和增加的度数之和是故答案为:【点睛】本题主要考查了多边形的内角和公式和外角和,是需要熟练掌握的内容2、360【分析】利用三角形的外角和定理解答【详解】解:是三角形ABC的不同
15、三个外角,三角形的外角和为360,1+2+3=360,故答案为:360【点睛】本题主要考查了三角形的外角和定理,三角形的外角的性质,属于中考常考题型3、【分析】根据三角形外角的性质和四边形内角和等于360可得A+B+C+D+E+F的度数【详解】解:如图,1=D+F,2=A+E,1+2+B+C=360,A+B+C+D+E+F=360故答案为:【点睛】本题考查了四边形的内角和,三角形的外角的性质,掌握三角形外角的性质是解题的关键4、24【分析】由三边长之比得到三角形的三条中位线之比,再由这三条中位线组成的三角形周长求出三中位线长,推出边长,再比大小判断即可【详解】 如图,H、I、J分别为BC,AC
16、,AB的中点,又AB:AC:BC=4:5:6,即BC边最长故填24【点睛】本题考查了三角形中位线的性质,即三角形的中位线平行于第三边且等于第三边的一半5、10 135 【分析】n边形的内角和是(n-2)180,代入就得到一个关于n的方程,就可以解得边数n当n=8时,利用即可得到正八边形的每个内角的度数【详解】解:根据题意,得:(n-2)180=1440,解得:n=10所以此多边形的边数为10;正八边形的每个内角为135故答案为:10;135【点睛】本题考查了多边形的内角和公式,已知多边形的内角和求边数,可以转化为解方程的问题解决三、解答题1、(1)a-b+3c;(2)这个多边形的边数为8【分析
17、】(1)利用三角形的三边关系得到a-b-c0,b-c-a0,然后去绝对值符号后化简即可;(2)根据正多边形的内角与外角是邻补角求出每一个外角的度数,再根据多边形的边数等于360除以每一个外角的度数列式计算即可得到边数【详解】解:(1)|a-b-c|+|b-c-a|+|c+a-b|=b+c-a+a+c-b+c+a-b =a-b+3c (2)正多边形的内角与其外角的度数比为3:1每一个外角为18045 边数360458 即这个多边形的边数为8【点睛】此题考查三角形的三边关系,利用三角形任意两边之和大于第三边,任意两边之差小于第三边,建立不等式解决问题2、(1)见解析;(2)见解析,或2【分析】(1
18、)由旋转的性质可得,再由ABC是的等腰直角三角形,可得,由此即可证明;(2)证明AEHAFG(SAS),可得AFG=AEH=45,从而根据两角的和可得结论;分两种情况:i)如图3,AQ=QG时,ii)如图4,当AG=QG时,分别根据等腰三角形的性质可得结论【详解】(1)证明:由旋转得:, ABC是的等腰直角三角形, ;(2)证明:在等腰直角三角形ABC中, 点E,F分别为AB,AC的中点,EF是的中位线, ,; 分两种情况:i)如图3,AQ=QG时,AQ=QG,QAG=AGQ,AGAH且AG=AH,AHG=AGH=45,AHG=AGH=HAQ=QAG=45,EAH=FAH=45,AE=AF,A
19、H=AH,AEHAFH(SAS),AHE=AHF,AHE+AHF=180,AHE=AHF=90,EAH=AEH=45,AH=EH,由得,即,;ii)如图4,当AG=QG时,GAQ=AQG,AEH=AGQ=45,GAQ=AQG=67.5,EAQ=HAG=90,EAH=GAQ=67.5,AHE=EAH=67.5,EH=AE=2H为线段EF上一动点(不与点E,F重合),不存在AG=AQ的情况综上,当AQG为等腰三角形时,HE=2或,故答案为:或2【点睛】本题是三角形的综合题,考查了旋转的性质,等腰直角三角形的性质和判定,等腰三角形的性质和判定,也考查了全等三角形的判定与性质,三角形中位线定理,第二问
20、要注意分类讨论,不要丢解3、【分析】根据,即可求得点,勾股定理求得即可求得点,再根据平行四边形的性质可得点坐标【详解】解:ABCD是平行四边形,轴,由题意可得,即,轴,、【点睛】此题考查了坐标与图形,涉及了勾股定理、平行四边形的性质,解题的关键是掌握并灵活运用相关性质进行求解4、15【分析】根据多边形内角和公式,可得新多边形的边数,根据新多边形比原多边形多1条边,可得答案【详解】设新多边形是n边形,由多边形内角和公式得:,解得:,则原多边形的边数是:原多边形的边数是15【点睛】本题主要考查了多边形内角与外角,解决本题的关键是要熟练掌握多边形的内角和公式5、(1)图见解析,A1(-1,3),B1
21、(1,-1),C1(3,0);(2)图见解析,B2(-1,-5),C2(1,-4);(3)D(1,)【分析】(1)分别作出A,B,C的对应点A1,B1,C1即可解决问题;(2)分别作出A,B,C的对应点A2,B2,C2即可解决问题;(3)画出图形,根据中点坐标计算写出即可【详解】(1)如图A1B1C1就是ABC绕点O顺时针旋转90后的图形,A1(-1,3),B1(1,-1),C1(3,0);(2)如图:将ABC绕点A顺时针旋转90后,由于B,C的对应点B2,C2均落在格点上,则AB2C2,是符合要求旋转后的图形, B2(-1,-5),C2(1,-4);(3)当线段B1C1绕点D(1,)旋转时,则B1C1与B2C2重合,如图,连接,可得,四边形为平行四边形,连接交于点D,点D为的中点,【点睛】本题考查旋转变换,平行四边形的判定与性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型