《2021-2022学年浙教版初中数学七年级下册第五章分式同步训练试题(含详解).docx》由会员分享,可在线阅读,更多相关《2021-2022学年浙教版初中数学七年级下册第五章分式同步训练试题(含详解).docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册第五章分式同步训练(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、下列各式中,负数是()ABCD2、下列各式计算正确的是()ABC D3、某病毒直径约为0.0000000089m,其中0.0000000089科学记数法表示为( )ABCD4、纳米工艺射频基带一体化导航定位芯片,已实现规模化应用.22纳米米,将0.000000022用科学记数法表示为( )ABCD5、已知, , ,则m, n, p的大小关系是( )Am p nBn m pCp n mDn p m 6、已知实数
2、满足,则下列结论:若,则;若,则;若,则;若,则,其中正确的个数是( )A1B2C3D47、下列有四个结论,其中正确的是( )若,则只能是;若的运算结果中不含项,则 若,则 若,则可表示为ABCD8、若,则可用含和的式子表示为( )ABCD9、如图所示是番茄果肉细胞结构图,番茄果肉细胞的直径约为0.0006米,将0.0006用科学记数法表示为( )ABCD10、若a0.52,b52,c(5)0,那么a、b、c三数的大小为()AacbBcabCabcDcba二、填空题(5小题,每小题4分,共计20分)1、用小数表示下列各数:_,_2、已知xy2,1,求x2yxy2_3、计算:已知10x=20,1
3、0y=50-1,求4x22y=_4、某种生物细胞的直径约为0.000000076米,用科学记数法表示为 _米5、计算:_三、解答题(5小题,每小题10分,共计50分)1、计算:(1)(2)2、计算或化简:(1); (2)3、(1)计算:;(2)化简:4、解分式方程5、先化简代数式,再选择一个合适的a的值代入求值-参考答案-一、单选题1、B【分析】先分别根据绝对值的性质,相反数的性质,零指数幂,乘方,进行化简,即可求解【详解】解:A、 ,是正数,故本选项不符合题意;B、 ,是负数,故本选项符合题意;C、 ,是正数,故本选项不符合题意;D、 ,是正数,故本选项不符合题意;故选:B【点睛】本题主要考
4、查了绝对值的性质,相反数的性质,零指数幂,乘方,有理数的分类,熟练掌握绝对值的性质,相反数的性质,零指数幂是解题的关键2、A【分析】根据各自的运算公式计算判断即可【详解】,A正确;,B不正确;,C不正确;,D不正确;故选A【点睛】本题考查了同底数幂的乘法,积的乘方,负整数指数幂,完全平方公式,熟练掌握各公式是解题的关键3、B【分析】科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同当原数绝对值10时,n是正整数;当原数的绝对值1时,n是负整数【详解】解:0.0000000089=,故选B【点睛】
5、此题考查科学记数法的表示方法科学记数法的表示形式为a10n的形式,其中1|a|10,n为整数,表示时关键要确定a的值以及n的值4、B【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:将0.000000022用科学记数法表示为故选:B【点睛】本题考查用科学记数法表示较小的数,一般形式为,其中,n为由原数左边起第一个不为零的数字前面的0的个数所决定5、D【分析】根据零指数幂、负指数幂以及乘方的运算求得,比较即可【详解】解:,故选D【点睛】此题考查了零指数幂、负指数幂
6、以及乘方的运算,涉及了有理数大小的比较,解题的关键是根据有关运算,正确求出的值6、D【分析】转化为,即可求解;先求出,再求出,即可得到答案;将变形求出值为1,再将变形求出值也为1,即可得到答案;将进行变形为,再将整体代入,即可得到答案【详解】解:因为,所以,故此项正确;因为,则所以,解得:;所以,所以,故此项正确;因为,所以,;所以,故此项正确;因为,所以,故此项正确;故选D【点睛】本题考查完全平方公式、分式的加法以及整体代入方法,解答本题的关键是明确题意,求出学会整体代入7、D【分析】根据零次幂、多项式乘多项式、完全平方公式及同底数幂的除法法则分别对每一项进行分析,即可得出答案【详解】解:若
7、,则或,错误;,不含项则,解得,正确;,所以,错误;,正确综上所述,正确故选D【点睛】本题考查了零次幂、多项式乘多项式、完全平方公式以及同底数幂的除法,熟练掌握运算法则是解题的关键8、D【分析】先将转化为关于b的整式方程,然后用a、s表示出b即可【详解】解:,s1,故选:D【点睛】本题考查解分式方程,解答的关键是熟练掌握分式方程的一般步骤9、B【分析】绝对值小于1的数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数n由原数左边起第一个不为零的数字前面的0的个数所决定【详解】解:0.0006=610-4 故选B【点睛】本题主要考查了用科学
8、记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定10、B【分析】直接利用负整数指数幂的性质以及零指数幂的性质分别化简得出答案【详解】a0.520.25,b52,c(5)01,cab故选:B【点睛】此题主要考查了负整数指数幂的性质以及零指数幂的性质,正确化简各数是解题关键二、填空题1、0.00001 0.0025 【分析】把1小数点向左移动5位即可得出答案,2.5小数点向左移动3位即可得出答案【详解】解:;故答案为:0.00001;0.0025【点睛】本题考查了写出科学记数法表示的原数,将科学记数法表示的数,还原成通常表示的数,就
9、是把的小数向左移动位所得到的数2、【分析】将变形后得到,再将多项式因式分解后整体代入可得结论【详解】解:,,原式,故答案是:【点睛】本题主要考查了因式分解的应用,解题的关键是将要求的代数式因式分解,并整体代入3、64【分析】根据10x=20,10y=50-1,可求出x-y=3,再将4x22y转化为4x-y代入计算即可【详解】解:10x=20,10y=50-1,10x10y=2050-1,即10x-y=1000=103,x-y=3,4x22y=4x-y=43=64,故答案为:64【点睛】本题考查了同底数幂的除法,幂的乘方与积的乘方以及负整数指数幂,掌握同底数幂的除法,幂的乘方与积的乘方以及负整数
10、指数幂的运算法则是正确计算的前提4、7.6108【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负整数指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】0.000000076米7.6108米,故答案为:7.6108【点睛】本题考查用科学记数法表示较小的数,一般形式为a10-n,其中1|a|10,n为由原数左边起第一个不为零的数字前面的0的个数所决定5、【分析】先将分母因式分解,再进行加减,即可求解【详解】解:原式故答案为:【点睛】本题主要考查了分式加减,熟练掌握分式的基本性质是解题的关键三、解答题1、(1)0
11、;(2)1【分析】(1)分别利用有理数的乘方及负整数指数幂的乘方法则进行计算即可;(2)分别利用积的乘方的运算法则及平方差公式进行计算,再合并同类项即可【详解】解:(1);(2)【点睛】本题考查了有理数的混合运算及整式的混合运算,熟练掌握相关运算法则并能灵活运用其求解是解题的关键2、(1)10;(2)【分析】(1)先化简绝对值,乘方,零指数幂,负指数幂,再计算乘法与符号化简,最后计算加减法;(2)根据多项式除以单项式转化为单项式除以单项式计算即可【详解】解:(1),;(2) 【点睛】本题考查实数混合运算,零指数幂,与负指数幂,多项式除以单项式,掌握实数混合运算法则,多项式除以单项式运算法则,零
12、指数幂,与负指数幂是解题关键3、(1)1;(2)-1【分析】(1)根据绝对值的意义及零次幂的性质进行计算即可;(2)分别运用平方差公式及同底数幂的除法法则进行计算,再合并同类项即可【详解】解:(1) ;(2) 【点睛】本题考查了实数及整式的混合运算,熟练掌握相关运算法则及性质是解题的关键4、【分析】根据解分式方程的步骤:去分母、去括号、移项、合并同类项、系数化为“1”,分步计算即可,注意分式方程要检验【详解】解:去分母,得:去括号,得:合并同类项,得:经检验知:是原方程的根,即原方程的根为【点睛】本题考查解分式方程,严格按照每一步骤相关要求解题是解方式方程的关键5、,2【分析】,代入原式按照化简原则化简即可【详解】解:原式取代入原式【点睛】本题考查分式的化简求值,根据相关公式化简即可