人教版八年级数学下册第十七章-勾股定理重点解析试题(无超纲).docx

上传人:知****量 文档编号:28171121 上传时间:2022-07-26 格式:DOCX 页数:26 大小:861.27KB
返回 下载 相关 举报
人教版八年级数学下册第十七章-勾股定理重点解析试题(无超纲).docx_第1页
第1页 / 共26页
人教版八年级数学下册第十七章-勾股定理重点解析试题(无超纲).docx_第2页
第2页 / 共26页
点击查看更多>>
资源描述

《人教版八年级数学下册第十七章-勾股定理重点解析试题(无超纲).docx》由会员分享,可在线阅读,更多相关《人教版八年级数学下册第十七章-勾股定理重点解析试题(无超纲).docx(26页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、人教版八年级数学下册第十七章-勾股定理重点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,在ABC中,AB12,BC13,AC5,则BC边上的高AD为( )A3B4CD4.82、如图,在RtAB

2、C中,ABC=90,AC=10,AB=6,则图中五个小直角三角形的周长之和为( )A14B16C18D243、课间,小聪拿着老师的等腰直角三角板玩,不小心掉到两墙之间(如图),ACB90,ACBC,从三角板的刻度可知AB20cm,小聪想知道砌墙砖块的厚度(每块砖的厚度相等),下面为砌墙砖块厚度的平方是( )Acm2Bcm2Ccm2Dcm24、下列条件中,能判断ABC是直角三角形的是( )Aa:b:c3:4:4Ba1,b,cCA:B:C3:4:5Da2:b2:c23:4:55、如图,四棱柱的高为9米,底面是边长为6米的正方形,一只蚂蚁从如图的顶点A开始,爬向顶点B那么它爬行的最短路程为()A10

3、米B12米C15米D20米6、下列长度的线段能组成直角三角形的是( )A3,4,6B3,4,5C6,8,9D5,12,147、在ABC中,C90,AB3,则AB2+BC2+AC2的值为( )A6B9C12D188、如图,斜坡BC的长度为4米为了安全,决定降低坡度,将点C沿水平距离向外移动4米到点A,使得斜坡AB的长度为4米,则原来斜坡的水平距离CD的长度是( )米A2B4C2D69、梯子的底端离建筑物6米,10米长的梯子可以到达建筑物的高度是( )A6米B7米C8米D9米10、如图,“赵爽弦图”是吴国的赵爽创制的以直角三角形的斜边为边长得到一个正方形,该正方形由4个全等的直角三角形再加上中间的

4、小正方形组成,在一次游园活动中,数学小组制作了一面“赵爽弦图锣”,其中,则阴影部分的面积是( )A169B25C49D64第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、我国古代数学著作九章算术中记载了一个问题:“今有池方一丈,葭生其中,出水一尺引葭赴岸,适与岸齐问水深几何?”(丈、尺是长度单位,1丈10尺)其大意为:有一个水池,水面是一个边长为10尺的正方形,在水池正中央有一根芦苇AB,它高出水面1尺(即BC1尺)如果把这根芦苇拉向水池一边的中点,它的顶端B恰好到达池边的水面D处问水的深度是多少?则水深DE为_尺2、如图,在DEF中,D90,DG:GE1:3,GEGF

5、,Q是EF上一动点,过点Q作QMDE于M,QNGF于N,则QM+QN的长是_3、如图,在RtABC中,B90,A60,AB,E为AC的中点,F为AB上一点,将AEF沿EF折叠得到DEF,DE交BC于点G,若BFD30,则CG_4、如图,长方形BCFG是一块草地,折线ABCDE是一条人行道,BC12米,CD5米为了避免行人穿过草地(走虚线BD,践踏绿草,管理部门分别在B、D处各挂了一块牌子,牌子上写着“少走_米,踏之何忍”5、如图,Rt中,将边沿翻折,使点落在上的点处;再将边沿翻折,使点落在的延长线上的点处,两条折痕与斜边分别交于点、,以下四个结论:;是等腰直角三角形;其中正确结论的序号有_三、

6、解答题(5小题,每小题10分,共计50分)1、ABC和DBE都是以点B为顶点的等腰直角三角形,ABC=DBE= 90,DBE可以点B为旋转中心进行旋转 (1)如图1,当边BD恰好在ABC的BC边上时,连接 AD ,若BE=1,AD= 2求线段DC的长; (2)如图2,当边BD旋转至ABC外时,连接CD、AD、CE ,其中AD与CE相交于点F求证:CE AD ; (3)如图3,F为AC的中点,当边BD旋转至ABC内时,连接AD、CE、FD,并在FD的延长线上取一点G,连结CG,使CGCE求证:FDA=CGF 2、生态兴则文明兴,生态衰则文明衰“十三五”以来,青岛市坚持生态优先、绿色发展理念,持续

7、改善生态环境如图现有施工遗留的一处空地,计划改造成绿地公园,已知A90,ABAD3米,BC10米,CD8米,已知每平方米的改造费用为200元,请问改造该区域需要花费多少元?3、如图是一个直角三角形纸片,C90,AB13cm,BC5cm,将其折叠,使点C落在斜边上的点C处,折痕为BD(如图),求AC和DC的长4、已知44的方格纸如图,请在图中画出一个直角边长为的等腰直角三角形,且三角形的三个顶点都在小方格的顶点上 5、如图,ABC中,AB=AC=8厘米,BC=6厘米,点D为AB的中点动点P在线段BC上以2厘米/秒的速度向点C运动,同时,动点Q在线段CA上由点C向点A运动,连接DP,PQ设点P运动

8、的时间为t秒,回答下列问题:(1)当点Q的运动速度为_厘米/秒时,BPD和CPQ全等;(2)若动点P的速度不变,同时动点Q以5厘米/秒的速度出发,两个点运动方向不变,沿ABC的三边运动请求出两点首次相遇时的t值,并说明此时两点在ABC的哪一条边上;在P、Q两点首次相遇前,能否得到以PQ为底的等腰APQ?如果能,请直接写出t值;如果不能,请说明理由-参考答案-一、单选题1、C【分析】根据勾股定理逆定理可证明是直角三角形,再利用直角三角形的面积公式可得,解可得答案【详解】解:,是直角三角形,故选:【点睛】本题主要考查了勾股定理逆定理,关键是掌握如果三角形的三边长,满足,那么这个三角形就是直角三角形

9、2、D【分析】由图形可知,内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为大直角三角形的周长【详解】解:由图形可以看出:内部小三角形直角边是大三角形直角边平移得到的,故内部五个小直角三角形的周长为ACBCAB,BC,五个小直角三角形的周长之和为ACBCAB24故选:D【点睛】主要考查了勾股定理的知识和平移的性质,难度适中,需要注意的是:平移前后图形的大小、形状都不改变3、A【分析】设每块砖的厚度为xcm,则AD=3xcm,BE=2xcm,然后证明DACECB得到CD=BE=2xcm,再利用勾股定理求解即可【详解】解:设每块砖的厚度为xcm,则AD=3xcm,BE=2

10、xcm,由题意得:ACB=ADC=BEC=90,ACD+DAC=ACD+BCE=90,DAC=ECB,又AC=CB,DACECB(AAS),CD=BE=2xcm,故选A【点睛】本题主要考查了全等三角形的性质与判定,勾股定理,解题的关键在于能够熟练掌握全等三角形的性质与判定条件4、B【分析】根据勾股定理的逆定理,以及三角形的内角等于逐项判断即可【详解】,设,此时,故不能构成直角三角形,故不符合题意;,故能构成直角三角形,故符合题意,且,设,则有,所以,则,故不能构成直角三角形,故不符合题意;,设,则,即,故不能构成直角三角形,故不符合题意;故选:B【点睛】本题考查了勾股定理的逆定理,和三角形的内

11、角和等知识,能熟记勾股定理的逆定理内容和三角形内角和等于是解题关键5、C【分析】将立体图形展开,有两种不同的展法,连接AB,利用勾股定理求出AB的长,找出最短的即可【详解】解:如图,(1)AB;(2)AB15,由于15,则蚂蚁爬行的最短路程为15米故选:C【点睛】本题考查了平面展开-最短路径问题,要注意,展开时要根据实际情况将图形安不同形式展开,再计算6、B【分析】根据勾股定理的逆定理逐一判断即可【详解】解:A、32+4262,故此选项不符合题意;B、32+4252,故此选项符合题意;C、62+8292,故此选项不符合题意;D、52+122142,故此选项不符合题意;故选:B【点睛】本题考查了

12、勾股定理的逆定理,解题的关键是理解如果三角形的三边长为a、b、c满足a2+b2c2,那么这个三角形就是直角三角形7、D【分析】根据,利用勾股定理可得,据此求解即可【详解】解:如图示,在中,故选:D【点睛】本题主要考查了勾股定理的性质,掌握直角三角形中,三角形的三边长,满足是解题的关键8、A【分析】设米,米,根据勾股定理用含的代数式表示,进而列出方程,解方程得到答案【详解】解:设米,米,在中,即,在中,即,解得:,即米,故选:A【点睛】本题考查的是勾股定理的应用,解题的关键是灵活运用勾股定理列出方程9、C【分析】根据题意画出图形,再根据勾股定理进行解答即可【详解】解:如图所示:AB=10米,BC

13、=6米,由勾股定理得:=8米故选:C【点睛】本题考查的是勾股定理的应用,根据题意画出图形,利用数形结合求解是解答此题的关键10、C【分析】先利用勾股定理求出,再利用大正方形的面积减去四个全等直角三角形的面积即可得【详解】解:,则阴影部分的面积是,故选:C【点睛】本题考查了勾股定理、全等三角形的性质,熟练掌握勾股定理是解题关键二、填空题1、12【分析】设水池里水的深度是尺,根据勾股定理列出方程,解方程即可【详解】设水池里水的深度是尺,则,由题意得:,解得:,故答案为:12【点睛】本题考查勾股定理的应用,由题意找出等量关系式是解题的关键2、4【分析】连接解直角三角形求出,再证明,即可解决问题【详解

14、】解:连接,可以假设,或(舍弃),故答案为:4【点睛】本题考查解直角三角形,勾股定理,等腰三角形的性质等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型3、2【分析】由直角三角形的性质求出,由折叠的性质得出,可求出,由勾股定理可求出的长【详解】解:,为的中点,将沿折叠得到,设,则,解得,故答案为:2【点睛】本题考查了折叠的性质,直角三角形的性质,勾股定理,三角形的内角和定理等知识,熟练掌握折叠的性质是解题的关键4、4【分析】根据勾股定理求得的长,用即可求解【详解】解:在中,则(米)故答案为:【点睛】本题考查了勾股定理的应用,求得的长是解题的关键5、【分析】根据折叠的性质,然后结

15、合等腰三角形的性质,直角三角形的性质,以及勾股定理,分别对每个选项进行判断,即可得到答案【详解】解:由折叠的性质可知,;故正确;,是等腰直角三角形;故正确;由勾股定理,则,由勾股定理,则,故错误;,;故正确;正确的选项有;故答案为:;【点睛】本题考查了折叠的性质,勾股定理,等腰三角形的判定和性质,三角形的面积公式等知识,解题的关键是掌握折叠的性质,正确得到边相等、角相等三、解答题1、(1)(2)见解析(3)见解析【分析】(1)利用等腰直角三角形的性质与勾股定理求出AB,故可求出CD;(2)设AD、BC交于O点,证明ABDCBE,再利用三角形的内角和得到CFO=ABO=90,故可求解;(3)延长

16、GE至H,令HE=GE,证明AHFCGF,得到H=G,AH=CG,再由ABDCBE得到AD=CE,故可得到AD=CG=AH,则FDA=H=CGF,即可求解【详解】解:(1)ABC和DBE都是以点B为顶点的等腰直角三角形BD=BE=1ABC = 90AB=BCCD=BC-BD=;(2)设AD、BC交于O点ABC和DBE都是以点B为顶点的等腰直角三角形,ABC=DBE= 90,AB=CB,DB=EB,ABC=DBE= 90ABC+CBD=DBE+CBDABD=CBEABDCBE(SAS)OAB=OCFAOB=COFCFO=ABO=90ADCE;(3)如图,延长GE至H,令HE=GEF点是AC中点A

17、F=CE又HFA=GFCAHFCGFH=G,AH=CG由(2)同理可得ABDCBEAD=CECE=CGAD=CG=AHFDA=H=CGF 即FDA=CGF 【点睛】此题主要考查等腰三角形的性质、全等三角形的判定与性质,解题的关键是熟知全等三角形的判定定理,根据图形的特点作辅助线求解2、改造该区域需要花费6600元【分析】连接,利用勾股定理求出的长,再利用勾股定理的逆定理证明,从而解决问题【详解】解:如图,连接,在中,由勾股定理得,(米,(平方米),(元,改造该区域需要花费6600元【点睛】本题主要考查了勾股定理和勾股定理的逆定理,解题的关键是作辅助线构造直角三角形3、,【分析】由题意可得,根据

18、勾股定理求得,设,在中,根据勾股定理列方程求解即可【详解】解:由题意可得,根据勾股定理可得:,设,则,在中,即,解得,即【点睛】此题考查了利用勾股定理解直角三角形,涉及了折叠的性质,解题的关键是掌握勾股定理4、见解析【分析】根据网格结构,所作三角形的直角边为以1、2为直角边的直角三角形的斜边即可【详解】解:如图,即为所求作,理由: 即为所求作的等腰直角三角形【点睛】本题考查了勾股定理的应用,是基础题,熟练掌握网格结构,并对熟悉勾股数是解题的关键5、(1)或2厘米/秒时;(2),两个点在ABC的边AC上首次相遇;0或【分析】(1)分当BPDCPQ时和当BPDCQP时,利用全等三角形的性质求解即可

19、;(2)根据当PQ相遇时,Q点比P点多走的距离为AB+AC,得到,由此求解即可;分当P在BC上靠近B一端,Q在AC上时,当P在BC上靠近C一端,Q在AC上时,当P在AC上,Q在AB上时,当P在AC上,Q在BC上时,进行分类讨论求解即可【详解】解:(1)当BPDCPQ时,Q点的运动速度为;当BPDCQP时,Q点的运动速度为;综上所述,当点Q的运动速度为或2厘米/秒时,BPD和CPQ全等;(2)当PQ相遇时,Q点比P点多走的距离为AB+AC,解得,两个点在ABC的边AC上首次相遇;如图所示,当P在BC上靠近B一端,Q在AC上时,过点A作AEBC于E, ,解得或(舍去);同理可求出当P在BC上靠近C一端,Q在AC上时,结果与上面相同;如图所示,当P在AC上,Q在AB上时,AQ=AP,解得;如图所示,当P在AC上,Q在BC上时,同图可知此时不存在t使得AQ=AP,综上所述,当t=0或,使得APQ是以PQ为底的等腰三角形【点睛】本题主要考查了全等三角形的性质,等腰三角形的性质,勾股定理,解题的关键在于能够利用分类讨论的思想求解

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁