《2021-2022学年度强化训练北师大版七年级数学下册第六章概率初步同步训练试题(含解析).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度强化训练北师大版七年级数学下册第六章概率初步同步训练试题(含解析).docx(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版七年级数学下册第六章概率初步同步训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列事件中,是必然事件的是( )A从一个只有白球的盒子里摸出一个球是白球B掷一枚硬币,正面朝上C任意买一张电影票
2、座位是3D汽车经过红绿灯路口时前方正好是绿灯2、任意掷一枚质地均匀的骰子,偶数点朝上的可能性是( )ABCD3、不透明的布袋内装有形状、大小、质地完全相同的1个白球,2个红球,3个黑球,若随机摸出一个球恰是黑球的概率为( )ABCD4、下列四幅图的质地大小、背面图案都一样,把它们充分洗匀后翻放在桌面上,则从中任意抽取一张,抽到的图案是中心对称图形的概率是( )ABCD15、数学老师将全班分成7个小组开展小组合作学习,采用随机抽签的办法确定一个小组进行展示活动,则第2小组被抽到的概率是( )ABCD6、如图,将一个棱长为3的正方体表面涂上颜色,再把它分割成棱长为1的小正方体,将它们全部放入一个不
3、透明盒子中摇匀,随机取出一个小正方体,只有一个面被涂色的概率为( )ABCD7、下列说法中,正确的是( )A随机事件发生的概率为B不可能事件发生的概率为0C概率很小的事件不可能发生D投掷一枚质地均匀的硬币100次,正面朝上的次数一定为50次8、一个黑色布袋中装有3个红球和2个白球,这些球除颜色外其它都相同,从袋子中随机摸出一个球,这个球是白球的概率是( )ABCD9、下列事件中,是必然事件的是()A如果a2b2,那么abB车辆随机到达一个路口,遇到红灯C2021年有366天D13个人中至少有两个人生肖相同10、不透明袋中装有3个红球和5个绿球,这些球除颜色外无其他差别从袋中随机摸出1个球是红球
4、的概率为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、箱子里有4个红球和个白球,这些球除颜色外均差别,小李从中摸到一个白球的概率是,则_2、转动如图所示的这些可以自由转动的转盘(转盘均被等分),当转盘停止转动后,根据“指针落在白色区域内”的可能性的大小,将转盘的序号按事件发生的可能性从小到大排列为_3、用抽签的办法从 A 、B 、C 、D 四人中任选一人去打扫公共场地,选中 A 的概率是_4、一个不透明的袋子里有3个红球和5个白球,每个球除颜色外都相同,从袋中任意摸出一个球,是红球的可能性_(填“大于”“小于”或“等于”)是白球的可能性5、有五张正面分别
5、标有数字2,1,0,1,2的卡片,它们除数字不同外其余全部相同现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为k,则使双曲线y过二、四象限的概率是_三、解答题(5小题,每小题10分,共计50分)1、节假日期间,某超市开展有奖促销,凡在超市购物的顾客均有转动转盘的机会(如图,转盘被分为8个扇形),规定当转盘停下来时指针指向8就中一等奖,指向2或6就中二等奖,指向1或3或5就中三等奖;指向其余数字不中奖(1)转动转盘中一等奖、二等奖、三等奖的概率分别是多少?(2)顾客中奖的概率是多少?2、一个不透明的口袋中放着若干个红球和黑球,这两种球除了颜色之外没有其他任何区别,袋中的球已经搅匀,闭眼
6、从口袋中摸出一个球,经过很多次实验发现摸到红球的频率逐渐稳定在(1)估计摸到黑球的概率是 ;(2)如果袋中原有红球12个,又放入n个黑球,再经过很多次实验发现摸到黑球的频率逐渐稳定在,求n的值3、随着人们生活水平的提高,对食品的要求越来越高,蛋糕的新鲜度也受到大家的关注某蛋糕店出售一种保质期较短的蛋糕,每天制作这种蛋糕若干块,且制做的蛋糕当天能全部售完,已知每块蛋糕的成本为元,售价为元,若当天下午点前出售不完剩下的蛋糕则以每块元低价售出,该蛋糕店记录了天这种蛋糕每天下午点前的售出量,整理成如下的统计表:每天下午点前的售出量/块天数(1)估计这天中,这种蛋糕每天下午点前的售出量不少于块的概率;(
7、2)若该蛋糕店一天计划制作这种蛋糕块或块,请你以这种蛋糕一天的平均盈利作为决策依据,该蛋糕店这一天应该制作这种蛋糕块还是块?并说明理由4、某校音乐组决定围绕在“舞蹈、乐器、声乐、戏曲、其它活动”项目中,你最喜欢哪一项活动(每人只限一项)的问题,在全校范围内随机抽取部分学生进行问卷调查,并将调查结果绘制如下两幅不完整的统计图请你根据统计图解答下列问题:(1)在这次调查中,一共抽查了_名学生其中喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为_扇形统计图中喜欢“戏曲”部分扇形的圆心角为_度(2)请你补全条形统计图(3)某班7位同学中,1人喜欢舞蹈,2人喜欢乐器,1人喜欢声乐,3人喜欢乐曲,李老师要
8、从这7人中任选1人参加学校社团展演,则恰好选出1人喜欢乐器的概率是_5、在一个不透明的口袋中,装有10个除颜色外其它完全相同的球,其中5个红球,3个蓝球,2个白球,它们已经在口袋中搅匀了下列事件中,哪些是必然发生的?哪些是不可能发生的?哪些是可能发生的?(1)从口袋中任取出一个球,它恰是红球;(2)从口袋中一次性任意取出2个球,它们恰好全是白球;(3)从口袋中一次性任意取出5个球,它们恰好是1个红球,1个蓝球,3个白球-参考答案-一、单选题1、A【分析】根据必然事件和随机事件的定义逐项判断即可得【详解】解:A、“从一个只有白球的盒子里摸出一个球是白球”是必然事件,此项符合题意;B、“掷一枚硬币
9、,正面朝上”是随机事件,此项不符题意;C、“任意买一张电影票座位是3”是随机事件,此项不符题意;D、“汽车经过红绿灯路口时前方正好是绿灯”是随机事件,此项不符题意;故选:A【点睛】本题考查了必然事件和随机事件,掌握理解定义是解题关键2、A【分析】如果一个事件的发生有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率 利用概率公式直接计算即可得到答案【详解】解:抛掷一枚分别标有1,2,3,4,5,6的正方体骰子,骰子落地时朝上的数为偶数的可能性有种,而所有的等可能的结果数有种,所以骰子落地时朝上的数为偶数的概率是 故选A【点睛】本题考查了简单随机事件的概率,掌握概率公式
10、是解本题的关键.3、B【分析】由在不透明的布袋中装有1个白球,2个红球,3个黑球,利用概率公式直接求解即可求得答案【详解】解:在不透明的布袋中装有1个白球,2个红球,3个黑球,从袋中任意摸出一个球,摸出的球是红球的概率是:故选:B【点睛】此题考查了概率公式的应用注意概率=所求情况数与总情况数之比4、C【分析】根据中心对称图形的定义,即把一个图形绕着某一点旋转180,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称和概率公式计算即可;【详解】根据已知图形可得,中心对称图形是,共有3个,抽到的图案是中心对称图形的概率是故选C【点睛】本题主要考查了概率公式应用和中心对称图形的识
11、别,准确分析计算是解题的关键5、B【分析】根据概率是所求情况数与总情况数之比,可得答案【详解】解:第3个小组被抽到的概率是,故选:B【点睛】本题考查了概率的知识用到的知识点为:概率所求情况数与总情况数之比6、B【分析】将一个棱长为3的正方体分割成棱长为1的小正方体,一共可得到27个小立方体,其中一个面涂色的有6块,可求出相应的概率【详解】解:将一个棱长为3的正方体分割成棱长为1的小正方体,一共可得到33327(个),有6 个一面涂色的小立方体,所以,从27个小正方体中任意取1个,则取得的小正方体恰有一个面涂色的概率为,故选:B【点睛】本题考查了概率公式,列举出所有等可能出现的结果数和符合条件的
12、结果数是解决问题的关键7、B【分析】根据事件发生可能性的大小进行判断即可【详解】解:A、随机事件发生的概率为0到1之间,选项错误,不符合题意;B、不可能事件发生的概率为0,选项正确,符合题意;C、概率很小的事件可能发生,选项错误,不符合题意;D、投掷一枚质地均匀的硬币 100 次, 正面朝上的次数可能是 50 次,选项错误,不符合题意;故选:B【点睛】本题考查随机事件与不可能事件的概率,掌握随机事件发生的概率在0到1之间,不可能事件发生的概率为0是关键8、D【分析】根据随机事件概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A),进行计
13、算即可【详解】解:一个黑色布袋中装有3个红球和2个白球,这些球除颜色外其它都相同,抽到每个球的可能性相同,布袋中任意摸出1个球,共有5种可能,摸到白球可能的次数为2次,摸到白球的概率是,P(白球)故选:D【点睛】本题考查了随机事件概率的求法,熟练掌握随机事件概率公式是解题关键9、D【分析】在一定的条件下重复进行试验时,有的事件在每次试验中必然会发生,这样的事件叫必然发生的事件,简称必然事件;利用概念逐一分析即可得到答案.【详解】解:如果a2b2,那么,原说法是随机事件,故A不符合题意;车辆随机到达一个路口,遇到红灯,是随机事件,故B不符合题意;2021年是平年,有365天,原说法是不可能事件,
14、故C不符合题意;13个人中至少有两个人生肖相同,是必然事件,故D符合题意,故选:D【点睛】本题考查的是必然事件的概念,不可能事件,随机事件的含义,掌握“必然事件的概念”是解本题的关键.10、A【分析】根据概率公式计算即可【详解】解:袋中装有3个红球和5个绿球共8个球,从袋中随机摸出1个球是红球的概率为,故选:A【点睛】此题考查了概率的计算公式,正确掌握计算公式是解题的关键二、填空题1、6【分析】根据白球的概率结合概率公式列出关于的方程,求出的值即可【详解】解:摸到一个白球的概率是,解得经检验,是原方程的根故答案为:6【点睛】本题考查概率的求法与运用,根据概率公式求解即可:如果一个事件有种可能,
15、而且这些事件的可能性相同,其中事件出现种结果,那么事件的概率(A)2、【分析】指针落在白色区域内的可能性是:白色总面积,比较白色部分的面积即可【详解】解:指针落在白色区域内的可能性分别为:, 从小到大的顺序为:【点睛】此题主要考查了可能性大小的比较:只要总情况数目(面积)相同,谁包含的情况数目(面积)多,谁的可能性就大;反之也成立;若包含的情况(面积)相当,那么它们的可能性就相等3、【分析】根据题干求出所有等可能的结果数,以及恰好选中A的情况数,再利用概率公式求解即可【详解】解:从A 、B 、C 、D 四人中,选一人去打扫公共场地,共4种情况,其中选中A的情况有一种,选中A去打扫公共场地的概率
16、为P=,故答案为:【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率为:P(A)=4、小于【分析】根据“哪种球的数量大哪种球的可能性就大”直接确定答案即可【详解】解:袋子里有3个红球和5个白球,红球的数量小于白球的数量,从中任意摸出1只球,是红球的可能性小于白球的可能性故答案为:小于【点睛】本题考查了可能性的大小,可能性大小的比较:只要总情况数目相同,谁包含的情况数目多,谁的可能性就大;反之也成立;若包含的情况相当,那么它们的可能性就相等5、【分析】若双曲线y过二、四象限,利用反比例函数的性质得出,求得符合题意的数字为-2,-
17、1,再利用随机事件的概率=事件可能出现的结果数所有可能出现的结果数即可求出结论【详解】解:双曲线y过二、四象限, , 符合题意的数字为-2,-1,该事件的概率为,故答案为:【点睛】本题考查了概率公式,利用反比例函数的性质,找出使得事件成立的k的值是解题的关键三、解答题1、(1),;(2)【分析】(1)分别求出数字8,2和6,1和3和5所占的份数即可求出转动转盘中一等奖、二等奖、三等奖的概率;(2)求出8,2,6,1,3,5份数之和即可得到顾客中奖的概率【详解】解:(1)由题意可知:,;(2)8,2,6,1,3,5份数之和为6,转动圆盘中奖的概率为:【点睛】此题考查概率的求法:如果一个事件有种可
18、能,而且这些事件的可能性相同,其中事件出现种结果,那么事件的概率(A)2、(1);(2)n6【分析】(1)取出黑球的概率1取出红球的概率;(2)首先根据红球的个数和摸出红球的概率求得黑球的个数,然后根据概率公式列式求解即可【详解】解:(1)P(取出黑球)1P(取出红球)1;故答案为:;(2)设袋子中原有黑球x个,根据题意得:,解得:x18,经检验x18是原方程的根,所以黑球有18个,又放入了n个黑球,根据题意得:,解得:n6经检验:符合题意【点睛】本题考查了利用频率估计概率:大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋
19、势,估计概率,这个固定的近似值就是这个事件的概率3、(1);(2)19块,理由见解析【分析】(1)根据表格信息解得每天下午点前的售出量不少于块的天数为78天,再根据概率公式解题;(2)分两种情况讨论,若该蛋糕店这一天制作这种蛋糕块,或若该蛋糕店这一天制作这种蛋糕块,分别计算获得的利润、低价售出的损失,继而解得净利润,再比较解题【详解】解:(1)由统计表可得,这天中,蛋糕每天下午点前的售出量不少于块的天数为(天),(蛋糕每天下午点前的售出量不少于块);(2)该蛋糕店这一天应该制作这种蛋糕块,理由如下:若该蛋糕店这一天制作这种蛋糕块,则可得:每天下午点前的售出量/块频率利润获得的利润为(元),低价
20、售出的损失为(元)则净利润为(元);若该蛋糕店这一天制作这种蛋糕块,则可得:每天下午点前的售出量/块频率利润获得的利润为(元),低价售出的损失为(元),则净利润为(元),该蛋糕店这一天应该制作这种蛋糕块【点睛】本题概率以及销售利润等知识,是重要考点,掌握相关知识是解题关键4、(1)50,24%,28.8;(2)见解析;(3)【分析】(1)用条形统计图中喜欢声乐的人数除以扇形统计图中喜欢声乐的人数所占百分比即可求出抽查的学生人数,用喜欢舞蹈活动项目的人数除以抽查人数即可求出其所占百分比;求得喜欢“戏曲”的百分比,然后乘即可(2)用总人数减去喜欢其它活动项目的人数即得喜欢“戏曲”的人数,进而可补全
21、条形统计图;(3)用喜欢乐器的人数除以7即得结果【详解】解:(1)在这次调查中,一共抽查了名学生,其中喜欢“舞蹈”活动项目的人数占抽查总人数的百分比为: ,扇形统计图中喜欢“戏曲”部分扇形的圆心角为:,故答案为:50,24%,28.8;(2)喜欢戏曲的学生有:(人),补全的条形统计图如下图所示:(3)某班7位同学中,1人喜欢舞蹈,2人喜欢乐器,1人喜欢声乐,3人喜欢乐曲,李老师要从这7人中任选1人参加学校社团展演,则恰好选出1人喜欢乐器的概率是,故答案为:【点睛】本题考查了条形统计图、扇形统计图以及求简单事件的概率等知识,熟练掌握上述基本知识是解题关键5、(1)可能发生,因为袋中有红球;(2)可能发生,因为袋中刚好有2个白球;(3)不可能发生,因为袋中只有2个白球,取不出3个白球【分析】根据必然事件、不可能事件、随机事件的概念可判断它们分别属于那一种类别【详解】(1)可能发生,因为袋中有红球;(2)可能发生,因为袋中刚好有2个白球;(3)不可能发生,因为袋中只有2个白球,取不出3个白球【点睛】解决本题需要正确理解必然事件、不可能事件、随机事件的概念必然事件指在一定条件下一定发生的事件不可能事件是指在一定条件下,一定不发生的事件不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件