《中考数学2022年河北张家口市中考数学第二次模拟试题(含答案解析).docx》由会员分享,可在线阅读,更多相关《中考数学2022年河北张家口市中考数学第二次模拟试题(含答案解析).docx(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年河北张家口市中考数学第二次模拟试题 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、用四舍五入法按要求对0.7831取近似值,其中正确的是( )A0
2、.783(精确到百分位)B0.78(精确到0.01)C0.7(精确到0.1)D0.7830(精确到0.0001)2、某种速冻水饺的储藏温度是,四个冷藏室的温度如下,不适合储藏此种水饺是( )ABCD3、下列图形中,既是轴对称图形,又是中心对称图形的是( )ABCD4、如图是三阶幻方的一部分,其每行、每列、每条对角线上三个数字之和都相等,则对于这个幻方,下列说法错误的是( )A每条对角线上三个数字之和等于B三个空白方格中的数字之和等于C是这九个数字中最大的数D这九个数字之和等于5、下列命题与它的逆命题都为真命题的是( )A已知非零实数x,如果为分式,那么它的倒数也是分式B如果x的相反数为7,那么
3、x为-7C如果一个数能被8整除,那么这个数也能被4整除D如果两个数的和是偶数,那么它们都是偶数6、点A,B在数轴上的位置如图所示,其对应的数分别是a和b,对于以下结论:(1)ba0;(2)|a|b|;(3)a+b0;(4)0其中正确的是( )A(1)(2)B(2)(3)C(3)(4)D(1)(4)7、在中,负数共有( )个.A4B3C2D18、如果,且,那么的值一定是( ) A正数B负数C0D不确定 线 封 密 内 号学级年名姓 线 封 密 外 9、若把分式中的x和y都扩大10倍,那么分式的值( )A扩大10倍B不变C缩小10倍D缩小20倍10、不等式组的解集在数轴上表示正确的是()ABCD第
4、卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、a是不为1的数,我们把称为a的差倒数,如:2的差倒数为;的差倒数是;已知是的差倒数,是的差倒数,是的差倒数,依此类推,则_2、妈妈用10000元钱为小明存了6年期的教育储蓄,6年后能取得11728元,这种储蓄的年利率为_%3、己知,为锐角的外心,那么_4、已知,那么它的余角是_,它的补角是_5、一元二次方程的根是 三、解答题(5小题,每小题10分,共计50分)1、已知二次函数的图象经过两点(1)求a和b的值;(2)在坐标系中画出该二次函数的图象2、如图,抛物线与x轴交于点,两点点P是直线BC上方抛物线上一动点,过点P作轴于点
5、E,交直线BC于点D设点P的横坐标为m(1)求抛物线的解析式;(2)求的最大面积及点P的坐标;3、如图,在平面直角坐标系中,抛物线yx2+bx+c过点A(0,1),B(3,2)直线AB交x轴于点C 线 封 密 内 号学级年名姓 线 封 密 外 (1)求抛物线的函数表达式;(2)点P是直线AB下方抛物线上的一个动点连接PA、PC,当PAC的面积取得最大值时,求点P的坐标和PAC面积的最大值;(3)把抛物线yx2+bx+c沿射线AB方向平移个单位形成新的抛物线,M是新抛物线上一点,并记新抛物线的顶点为点D,N是直线AD上一点,直接写出所有使得以点B,C,M,N为顶点的四边形是平行四边形的点M的坐标
6、,并把求其中一个点M的坐标的过程写出来4、解方程:5、已知二次函数yax2+bx+c的图象经过A(1,5)、B(1,9),C(0,8)(1)求这个二次函数的解析式;(2)如果点D(x1,y1)和点E(x2,y2)在函数图象上,那么当0x1x21时,请直接写出y1与y2的大小关系:y1 y2-参考答案-一、单选题1、B【分析】精确到某一位,即对下一位的数字进行四舍五入;0.783(精确到千分位),0.7831(精确到0.1)是0.8【详解】A. 0.783(精确到千分位), 所以A选项错误;B、0.78(精确到0.01),所以B选项正确;C、0.8(精确到0.1),所以C选项错误;D、0.783
7、1(精确到0.0001),所以D选项错误;故选:B【点睛】本题考查了近似数和有效数字:经过四舍五入得到的数叫近似数;从一个近似数左边第一个不为0的数数起到这个数完为止,所有数字都叫这个数的有效数字2、B【分析】根据有理数的加减运算,可得温度范围,根据温度范围,可得答案【详解】解:-18-2=-20,-18+2=-16,温度范围:-20至-16,故选:B【点睛】本题考查了正数和负数,有理数的加法运算是解题关键,先算出适合温度的范围,再选出不适合的温度3、C【分析】根据轴对称图形和中心对称图形的概念对各选项分析判断即可得解【详解】 线 封 密 内 号学级年名姓 线 封 密 外 解:A是轴对称图形,
8、不是中心对称图形,故本选项不符合题意;B不是轴对称图形,是中心对称图形,故本选项不符合题意;C是轴对称图形,也是中心对称图形,故本选项符合题意;D是轴对称图形,不是中心对称图形,故本选项不符合题意故选:C【点睛】本题考查了中心对称图形与轴对称图形的概念,轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合4、B【分析】根据每行、每列、每条对角线上三个数字之和都相等,则由第1列三个已知数5+4+918可知每行、每列、每条对角线上三个数字之和为18,于是可分别求出未知的各数,从而对四个选项进行判断【详解】每行、每列、每条对角线上三个数字之和都
9、相等,而第1列:5+4+918,于是有5+b+318,9+a+318,得出a6,b10,从而可求出三个空格处的数为2、7、8,所以答案A、C、D正确,而2+7+81718,答案B错误,故选B【点睛】本题考查的是数字推理问题,抓住条件利用一元一次方程进行逐一求解是本题的突破口5、B【分析】先判断原命题的真假,然后分别写出各命题的逆命题,再判断逆命题的真假.【详解】解:A. 的倒数是,不是分式,原命题是假命题,不符合题意;B. 如果x的相反数为7,那么x为-7是真命题,逆命题为:如果x为-7,那么x的相反数为7,是真命题,符合题意;C. 如果一个数能被8整除,那么这个数也能被4整除是真命题,逆命题
10、为:如果一个数能被4整除,那么这个数也能被8整除,是假命题,不符合题意;D.因为两个奇数的和也是偶数,所以原命题是假命题,不符合题意;故选B.【点睛】本题主要考查命题的逆命题和命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题判断命题的真假关键是要熟悉课本中的性质定理6、B【分析】根据图示,判断a、b的范围:3a0,b3,根据范围逐个判断即可.【详解】解:根据图示,可得3a0,b3,(1)ba0,故错误;(2)|a|b|,故正确;(3)a+b0,故正确; 线 封 密 内 号学级年名姓 线 封 密 外 (4)0,故错误故选B【点睛】此题主要考查了绝对值的意义和有理数的运算符号的判断,以及数
11、轴的特征和应用,要熟练掌握,解答此题的关键是判断出a、b的取值范围7、A【分析】首先将各数化简,然后根据负数的定义进行判断【详解】解:-(-8)=8,-|-1|=-1,-|0|=0,负数共有4个故选A【点睛】此题考查的知识点是正数和负数,关键是判断一个数是正数还是负数,要把它化简成最后形式再判断负数是指小于0的数,注意0既不是正数,也不是负数8、A【分析】根据有理数的加减法法则判断即可【详解】解:a0,b0,且|a|b|,-b0,|a|-b|,=a+(-b)0故选:A【点睛】本题考查有理数的加减法法则用到的知识点:减去一个数等于加上这个数的相反数,绝对值不等的异号加减,取绝对值较大的加数符号9
12、、B【分析】把x和y都扩大10倍,根据分式的性质进行计算,可得答案【详解】解:分式中的x和y都扩大10倍可得:,分式的值不变,故选B【点睛】本题考查了分式的性质,分式的分子分母都乘以或除以同一个不为零的数或者整式,分式的值不变10、C【解析】【分析】先求出不等式组的解集,再在数轴上表示出来即可【详解】解不等式得:x2,解不等式得:x1,不等式组的解集为1x2,在数轴上表示为: 线 封 密 内 号学级年名姓 线 封 密 外 故选C【点睛】本题考查了解一元一次不等式组和在数轴上表示不等式组的解集,能根据不等式的解集求出不等式组的解集是解答此题的关键二、填空题1、【分析】根据题意,可以写出这列数的前
13、几个数,从而可以发现数字的变化特点,进而得到a2019的值【详解】解:,是的差倒数,即,是的差倒数,即,是的差倒数,即,依此类推,故答案为:【点睛】本题考查数字的变化类、新定义,解答本题的关键是明确题意,发现数字的变化特点,求出所求项的值2、2.88【分析】先设出教育储蓄的年利率为x,然后根据6年后总共能得本利和11728元,列方程求解【详解】解析:设年利率为,则由题意得,解得故答案为:【点睛】本题考查了一元一次方程的应用,关键在于找出题目中的等量关系,根据等量关系列出方程解答3、【解析】【分析】根据外心的概念及圆周角定理即可求出答案.【详解】O是ABC的外心,O为ABC的外接圆圆心,BOC是
14、弧BC所对圆心角,BAC是弧BC所对圆周角,BAC=BOC=40,故答案为:40【点睛】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查外心的概念及圆周角定理,外心是三角形外接圆的圆心,同弧所对的圆周角等于圆心角的一半,熟练掌握外心的概念及圆周角定理是解题关键.4、 【分析】根据余角、补角的性质即可求解【详解】解:,故答案为,【点睛】此题考查了补角和余角的性质,理解余角和补角的性质是解题的关键5、【详解】解:用因式分解法解此方程,即.故答案为:.【点睛】本题考查解一元二次方程.掌握解一元二次方程的方法,选择适合的方法可以简便运算三、解答题1、(1)(2)见解析【分析】(1)利用待定系数
15、法将两点代入抛物线求解即可得;(2)根据(1)中结论确定函数解析式,求出与x,y轴的交点坐标及对称轴,然后用光滑的曲线连接即可得函数图象(1)解:二次函数的图象经过两点, 解得: (2)解:由(1)可得:函数解析式为:,当时,解得:,抛物线与x轴的交点坐标为:, 线 封 密 内 号学级年名姓 线 封 密 外 抛物线与y轴的交点坐标为:,对称轴为:,根据这些点及对称轴在直角坐标系中作图如下【点睛】题目主要考查待定系数法确定函数解析式及作函数图象,熟练掌握待定系数法确定函数解析式是解题关键2、(1);(2)时,此时【分析】(1)待定系数法直接将函数图象上已知坐标点代入函数表达式解方程即可;(2)先
16、求出直线BC的解析式,根据题意用含m的表达式分别表示出P,D的坐标,再用含m的表达式表示出的面积,根据二次函数求最值知识求解即可【详解】解:(1)将点A、B坐标代入抛物线解析式,得,解得,抛物线的解析式为(2)当时,设直线BC的解析式为,直线BC经过点B、点C,将点B、C坐标代入直线BC解析式得:,解得:,直线BC的解析式为点P的横坐标为,点D的横坐标也为,将P,D分别代入抛物线和直线BC解析式, 线 封 密 内 号学级年名姓 线 封 密 外 ,当时,此时【点睛】此题考查一次函数求解析式和二次函数求解析式及二次函数图像,求最值等,此题还涉及到结合图像列出三角形面积公式,有一定难度3、(1)(2
17、),(3)或,或,【分析】(1)先由抛物线过点求出的值,再由抛物线经过点求出的值即可;(2)作轴,交直线于点,作于点,设直线的函数表达式为,由直线经过点求出直线的函数表示式,设,则,可证明,于是可以用含的代数式表示、的长,再将的面积用含的代数式表示,根据二次函数的性质即可求出的面积的最大值及点的坐标;(3)先由沿射线方向平移个单位相当于向右平移1个单位,再向上平移1个单位,说明抛物线沿射线方向平移个单位也相当于向右平移1个单位,再向上平移1个单位,根据平移的性质求出新抛物线的函数表达式,再按以为对角线或以为一边构成平行四边形分类讨论,求出点的坐标【小题1】解:抛物线过点,抛物线经过点,解得,抛
18、物线的函数表达式为【小题2】如图1,作轴,交直线于点,作于点,则,设直线的函数表达式为,则,解得,直线的函数表达式为,当时,则,解得, 线 封 密 内 号学级年名姓 线 封 密 外 ,轴,设,则,当时,此时,点的坐标为,面积的最大值为【小题3】如图2,将沿射线方向平移个单位,则点的对应点与点重合,得到,相当于向右平移1个单位,再向上平移1个单位,抛物线沿射线方向平移个单位也相当于向右平移1个单位,再向上平移1个单位,平移后得到的抛物线的函数表达式为,即,它的顶点为,轴,设直线与抛物线交于点,由平移得,为的中点,当以,为顶点平行四边形以为对角线时,设抛物线交轴于点,作直线交轴于点, 线 封 密
19、内 号学级年名姓 线 封 密 外 当时,延长交轴于点,则,四边形是平行四边形,是以,为顶点平行四边形的顶点;若点与点重合,点与点重合,也满足,但此时点、在同一条直线上,构不成以点、为顶点平行四边形;如图3,以,为顶点的平行四边形以为一边,抛物线,当时,则,解得,抛物线经过点,设抛物线与轴的另一个交点为,则,作于点,连接,则轴,点的纵坐标为1,当时,则,解得,点的坐标为,或, 线 封 密 内 号学级年名姓 线 封 密 外 综上所述,点的坐标为或,或,【点睛】此题重点考查二次函数的图象与性质、一次函数的图象与性质、全等三角形的判定与性质、平行四边形的判定、勾股定理、解一元二次方程等知识与方法,解题
20、时应注意数形结合、分类讨论等数学思想的运用4、【分析】方程两边同时乘以12,去分母后,依次计算即可【详解】,去分母,得3(2x+1)-2(x-3)=12,去括号,得6x+3-2x+6=12,移项,得6x-2x=12-3-6,合并同类项,得4x=3,系数化为1,得x=【点睛】本题考查了一元一次方程的解法,熟练掌握五步骤解一元一次方程是解题的关键5、(1)y=-x2-2x+8(2)【分析】(1)由题意直接根据待定系数法即可求得;(2)根据题意先求得抛物线的开口方向和对称轴,然后根据二次函数的性质即可判断(1)解:二次函数y=ax2+bx+c的图象经过A(1,5)、B(-1,9),C(0,8),解得:,二次函数解析式为y=-x2-2x+8.(2)y=-x2-2x+8=-(x+1)2+7,抛物线开口向下,对称轴为直线x=-1,当x-1时,y随x的增大而减小,0x1x21,y1y2故答案为: 线 封 密 内 号学级年名姓 线 封 密 外 【点睛】本题考查待定系数法求二次函数的解析式以及二次函数的图象和性质,熟练掌握待定系数法和二次函数的性质是解题的关键