人教版九年级数学下册第二十八章-锐角三角函数必考点解析试卷(含答案详细解析).docx

上传人:知****量 文档编号:28168421 上传时间:2022-07-26 格式:DOCX 页数:27 大小:698.28KB
返回 下载 相关 举报
人教版九年级数学下册第二十八章-锐角三角函数必考点解析试卷(含答案详细解析).docx_第1页
第1页 / 共27页
人教版九年级数学下册第二十八章-锐角三角函数必考点解析试卷(含答案详细解析).docx_第2页
第2页 / 共27页
点击查看更多>>
资源描述

《人教版九年级数学下册第二十八章-锐角三角函数必考点解析试卷(含答案详细解析).docx》由会员分享,可在线阅读,更多相关《人教版九年级数学下册第二十八章-锐角三角函数必考点解析试卷(含答案详细解析).docx(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、人教版九年级数学下册第二十八章-锐角三角函数必考点解析 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、在正方形网格中,每个小正方形的边长都是1,BAC的位置如图所示,则sinBAC的值为()ABCD2、在

2、ABC中, ,则ABC一定是( )A直角三角形B等腰三角形C等边三角形D等腰直角三角形3、在RtABC中,C90,sinA,则cosB等于( )ABCD4、等腰三角形的底边长,周长,则底角的正切值为( )ABCD5、如图,一艘轮船在小岛A的西北方向距小岛海里的C处,沿正东方向航行一段时间后到达小岛A的北偏东的B处,则该船行驶的路程为( )A80海里B120海里C海里D海里6、在ABC中,ACB90,AC1,BC2,则sinB的值为()ABCD7、如图,ABC中,ABAC2,B30,ABC绕点A逆时针旋转(0120)得到ABC,BC与BC、AC分别交于点D、点E,设CD+DEx,AEC的面积为y

3、,则y与x的函数图象大致为()A BC D8、下列叙述正确的有()圆内接四边形对角相等;圆的切线垂直于圆的半径;正多边形中心角的度数等于这个正多边形一个外角的度数;过圆外一点所画的圆的两条切线长相等;边长为6的正三角形,其边心距为2A1个B2个C3个D4个9、如图,在ABC中,C90,BC1,AB,则下列三角函数值正确的是()AsinABtanA2CcosB2DsinB10、如图所示,九(二)班的同学准备在坡角为的河堤上栽树,要求相邻两棵树之间的水平距离为8 m,那么这两棵树在坡面上的距离AB为( )A8mB mC8sina mD m第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计

4、20分)1、ABC中,B为锐角,cosB,AB,AC2,则ACB的度数为_2、如图,中,点D、点E分别在AB、AC上,连接CD、ED,则_3、在中,以BC为斜边作等腰,若,则BC边的长为_4、如图,ABC的顶点是正方形网格的格点,则cosC_5、规定: ,据此判断下列等式成立的是:_(写出所有正确的序号)cos(60) ,sin75,三、解答题(5小题,每小题10分,共计50分)1、如图,RtABC中,的平分线交BC于点O,以OC为半径的半圆交BC于点D(1)求证:AB是O的切线; (2)如果求AC的长2、3、如图,某学校新建了一座雕塑CD,小林站在距离雕塑3.5米的A处自B点看雕塑头顶D的仰

5、角为60,看雕塑底部C的仰角为45,求雕塑CD的高度(最后结果精确到0.1米,参考数据:)4、计算(1) (2)4x28x105、如图,O是ABC的外接圆,点D在OC的延长线上,OD与AB相交于E,cosA,D30(1)证明:BD是O的切线;(2)若ODAB,AC3,求BD的长-参考答案-一、单选题1、D【分析】先求出ABC的面积,以及利用勾股定理求出,利用面积法求出,进而求解即可【详解】解:如图所示,过点B作BDAC于D,由题意得:,故选D【点睛】本题主要考查了勾股定理和求正弦值,解题的关键在于能够正确作出辅助线,构造直角三角形2、D【分析】结合题意,根据乘方和绝对值的性质,得,从而得,根据

6、特殊角度三角函数的性质,得,;根据等腰三角形和三角形内角和性质计算,即可得到答案【详解】解:,ABC一定是等腰直角三角形故选:D【点睛】本题考查了绝对值、三角函数、三角形内角和、等腰三角形的知识;解题的关键是熟练掌握绝对值、三角函数的性质,从而完成求解3、A【分析】由知道A=30,即可得到B的度数即可求得答案【详解】解:在RtABC中,C90,A=30,B=60,故选A【点睛】本题主要考查了特殊角的锐角三角函数值,直角三角形两锐角互余,解题的关键是正确识记30角的正弦值和60度角的余弦值4、C【分析】由题意得出等腰三角形的腰长为13cm,作底边上的高,根据等腰三角形的性质得出底边一半的长度,最

7、后由三角函数的定义即可得出答案【详解】如图,是等腰三角形,过点A作,BC=10cm,AB=AC,可得:,AD是底边BC上的高,即底角的正切值为故选:C【点睛】本题主要考查等腰三角形的性质、勾股定理和三角函数的定义,熟练掌握等腰三角形的“三线合一”是解题的关键5、D【分析】过点A作ADBC于点D,分别在 和中,利用锐角三角函数,即可求解【详解】解:过点A作ADBC于点D,根据题意得: 海里,ADC=ADB=90,CAD=45,BAD=60,在 中, 海里,在 中, 海里, 海里,即该船行驶的路程为海里故选:D【点睛】本题主要考查了解直角三角形,熟练掌握特殊角的锐角三角函数值是解题的关键6、A【分

8、析】先根据勾股定理求出斜边AB的值,再利用正弦函数的定义计算即可【详解】解:在ABC中,ACB=90,AC=1,BC=2,AB=,sinB=,故选:A【点睛】本题考查了锐角三角函数的定义,勾股定理解决此类题时,要注意前提条件是在直角三角形中,此外还有熟记三角函数的定义7、B【分析】先证ABFACE(ASA),再证BFDCED(AAS),得出DE+DC=DE+DB=BE=x,利用锐角三角函数求出,AG=ACsin30=1,根据三角形面积列出函数解析式是一次函数,即可得出结论【详解】解:设BC与AB交于F,ABC绕点A逆时针旋转(0120)得到ABC,BAF=CAE=,AB=AC=AB=AC,B=

9、C=B=C=30,在ABF和ACE中,ABFACE(ASA),AF=AE,AB=AC,BF=AB-AF=AC-AE=CE,在BFD和CED中,BFDCED(AAS),BD=CD,FD=ED,DE+DC=DE+DB=BE=x,过点A作AGBC于G,AB=AC,BG=CG,AC=2,cosC=,AG=ACsin30=1EC=是一次函数,当x=0时,故选择B【点睛】本题考查等腰三角形性质,图形旋转,三角形全等判定与性质,解直角三角形,三角形面积,列一次函数解析式,识别函数图像,本题综合性强,难度大,掌握以上知识是解题关键8、B【分析】利用圆内接四边形的性质可判断;根据圆的切线性质可判断;根据正多边形

10、性质可判断;根据正三角形边长为6,连接OB、OC;先求出中心角BOC,根据等腰三角形性质,求出BOD12060,利用锐角三角函数可求OD6即可【详解】解:圆内接四边形对角互补但不一定相等,故不符合题意;圆的切线垂直于过切点的半径,故不符合题意;正n多边形中心角的度数等于,这个正多边形的外角和为360,一个外角的度数等于正确,故符合题意;过圆外一点所画的圆的两条切线长相等,正确,故符合题意;如图,ABC为正三角形,点O为其中心;ODBC于点D;连接OB、OC;OBOC,BOC360120,BDBC3,BOD12060,tanBOD,OD6,即边长为6的正三角形的边心距为,故不符合题意,故选:B【

11、点睛】本题考查圆内接四边形性质,圆的切线性质,切线长性质,正多边形的中心角与外角,锐角三角函数,边心距,掌握圆内接四边形性质,圆的切线性质,切线长性质,正多边形的中心角与外角,锐角三角函数,边心距是解题关键9、D【分析】根据正弦、余弦及正切的定义直接进行排除选项【详解】解:在ABC中,C90,BC1,AB,;故选D【点睛】本题主要考查三角函数,熟练掌握三角函数的求法是解题的关键10、B【分析】运用余弦函数求两树在坡面上的距离AB【详解】解:坡角为,相邻两树之间的水平距离为8米,两树在坡面上的距离(米)故选:B【点睛】此题主要考查解直角三角形中的坡度坡角问题及学生对坡度坡角的掌握及三角函数的运用

12、能力二、填空题1、60或120【解析】【分析】根据题意,由于的长没有确定,故分类讨论,分是锐角和钝角两种情况画出图形,解直角三角形即可【详解】解:如图,当是锐角时,过点作于点, cosB,AB,AC2,如图,当是钝角时,过点作的延长线于点, cosB,AB,AC2,故答案为:或【点睛】本题考查了解斜三角形,构造直角三角形并分类讨论是解题的关键2、【解析】【分析】如图,过作于 过作于 作于 证明四边形为矩形,再求解 证明 设 则 再表示 利用列方程,再解方程可得答案.【详解】解:如图,过作于 过作于 作于 四边形为矩形, 设 则 由 同理: 解得: 故答案为:【点睛】本题考查的是等腰直角三角形的

13、性质,矩形的判定与性质,等腰三角形的判定与性质,锐角三角函数的应用,熟练的运用“锐角三角函数建立方程”是解本题的关键.3、2【解析】【分析】根据题意作出图形,过点作于点,则,由是等腰直角三角形,进而可得是等腰直角三角形,根据正切的定义求得,进而求得【详解】解:如图,过点作于点,是等腰直角三角形,是等腰直角三角形,即解得故答案为:2【点睛】本题考查了正切的定义,解直角三角形,根据题意作出图形是解题的关键4、255#255【解析】【分析】如图所示,连接BE,先计算出CE、BE、BC的长,即可利用勾股定理的逆定理得到CEB=90,由此求解即可【详解】解:如图所示,连接图中BE,由勾股定理得:CE=4

14、2+22=25,BE=12+22=5,BC=32+42=5,CE2+BE2=252+52=25=BC2,CEB是直角三角形,CEB=90,cosC=CECB=255,故答案为:255【点睛】本题主要考查了勾股定理和勾股定理的逆定理,余弦,解题的关键在于能够找到E点构造直角三角形5、【解析】【分析】根据规定运算法则可得,由此可判断;根据和规定的运算法则即可判断;根据和规定的运算法则即可判断;根据和规定的运算法则即可得【详解】解:,等式不成立;,等式成立;,等式成立;,等式成立;综上,等式成立的是,故答案为:【点睛】本题考查了正弦和余弦,掌握理解规定的三角函数运算法则是解题关键三、解答题1、(1)

15、见解析;(2)6【解析】【分析】(1)过点作,垂足为,根据角平分线的性质证明,进而即可证明AB是O的切线;(2)勾股定理求得EB,进而根据即可求得AC【详解】(1)证明:如图,过点作,垂足为,是的平分线,,OC为半径为的半径是的切线(2)在中,【点睛】本题考查了角平分线的性质,切线的判定与性质,勾股定理,根据正切值求边长,掌握切线的判定是解题的关键2、【解析】【分析】将式子中特殊角的三角函数值换掉,然后去绝对值,计算负指数幂,最后进行加减运算即可【详解】解:【点睛】题目主要考查特殊角的三角函数值的运算及绝对值、负指数幂的运算,熟记特殊角的三角函数值是解题关键3、米【解析】【分析】首先分析图形:

16、根据题意构造两个直角三角形、,再利用其公共边求得、,再根据计算即可求出答案【详解】解:在中,米,在中,米,则米故塑像的高度大约为米【点睛】本题考查解直角三角形的知识,解题的关键是要先将实际问题抽象成数学模型分别在两个不同的三角形中,借助三角函数的知识,研究角和边的关系4、(1)0;(2)【解析】【分析】(1)原式利用负整数指数幂,绝对值化简,特殊角的三角函数值以及零指数幂法则计算即可得到结果;(2)移项后配方,开方,即可得出两个一元一次方程,再求出方程的解即可【详解】解:(1)原式=4-3+-1=0;(2)4x28x10,4x28x-1,配方,得;4x28x4-1+4,(2x-2)2=3,开方

17、,得2x-2=,解得:;【点睛】本题考查了实数的运算,负整数指数幂,绝对值化简,特殊角的三角函数值,零指数幂法则及解一元二次方程,熟练掌握各自的性质是解(1)题的关键,能选择适当的方法解一元二次方程是解(2)题的关键5、(1)见解析;(2)【解析】【分析】(1)连接OB,由cosA得A30,则BOD2A60,而D30,可求得OBD90,根据切线的判定定理即可证明;(2)由ODAB,根据垂径定理得BEAE,则BCAC3,再证明BOC是等边三角形,则OBBC3,根据直角三角形中30角所对的直角边等于斜边的一半,可得OD2OB6,根据勾股定理即可求出BD的长【详解】(1)证明:如图,连接OB,cosA,且cos30,A30,ABOC,BOC2A60,BOD60,D30,OBD180603090,OB是O的半径,且BDOB,BD是O的切线(2)解:如图,ODAB,EBAE,BCAC3,OBOC,BOC60,BOC是等边三角形,OBBC3,OBD90,D30,OD2OB6,BD3,BD的长为3【点睛】本题主要考查了特殊角的三角函数值、切线的证明、垂径定理以及直角三角形的性质等知识点,灵活运用相关知识成为解答本题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁