《2021-2022学年京改版七年级数学下册第五章二元一次方程组课时练习试题.docx》由会员分享,可在线阅读,更多相关《2021-2022学年京改版七年级数学下册第五章二元一次方程组课时练习试题.docx(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、京改版七年级数学下册第五章二元一次方程组课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、关于的二元一次方程组的解满足,则k的值是( )A2BCD32、下列各方程中,是二元一次方程的是()A=y+5
2、xB3x+1=2xyCx=y2+1Dx+y=13、若关于x,y的二元一次方程组的解,也是二元一次方程x2y1的解,则a的值为( )A2B1CD04、已知是方程5xay15的一个解,则a的值为( )A5B5C10D105、二元一次方程的解可以是( )ABCD6、九章算术是中国古代数学著作之一,书中有这样的一个问题:今有黄金九枚,白银一十一枚,称之重,适等交易其一,金轻十三两问金、银一枚各重几何?大意是说:九枚黄金与十一枚白银重量相等,互换一枚,黄金比白银轻13两,问:每枚黄金、白银的重量各为多少?设一枚黄金的重量为x两,一枚白银的重量为y两,则可列方程组为( )ABCD7、用代入消元法解关于、的
3、方程组时,代入正确的是( )ABCD8、下列各式中是二元一次方程的是( )ABCD9、一艘缉毒艇去距90海里的地方执行任务,去时顺水用了3小时,任务完成后按原路返回,逆水用了3.6小时,求缉毒艇在静水中的速度及水流速度设在静水中的速度为x海里/时,水流速度为y海里/时,则下列方程组中正确的是( )ABCD10、用加减法解方程组由-消去未知数,所得到的一元一次方程是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知,用含m的代数式表示n,则_2、用加减法解方程组时,+得_,即_;得_,即_,所以原方程组的解为_3、如图所示,矩形ABCD被分成一些正方形,已
4、知AB32cm,则矩形的另一边AD_cm4、已知,用含的式子表示,其结果是_5、已知是方程的一组解,则=_三、解答题(5小题,每小题10分,共计50分)1、已知关于,的方程组,若该方程组的解,的值互为相反数,求的值和方程组的解2、解方程组:(1)(消元法); (2)(加减法)3、m取哪些整数时,方程组的解是正整数?求出正整数解4、请用指定的方法解下列方程组:(1);(代入法)(2)(加减法)5、解方程组:(1) (2)-参考答案-一、单选题1、B【分析】解方程组,用含的式子表示,然后将方程组的解代入即可【详解】解:,得:,解得:,故选:B【点睛】本题考查了二元一次方程组解,和二元一次方程组的解
5、的应用,运用整体法得出,可以是本题变得简便2、D【分析】根据二元一次方程的定义逐一排除即可【详解】解:A、y+5x不是二元一次方程,因为不是整式方程;B、3x+12xy不是二元一次方程,因为未知数的最高项的次数为2;C、xy2+1不是二元一次方程,因为未知数的最高项的次数为2;D、x+y1是二元一次方程故选:D【点睛】此题主要考查了二元一次方程定义关键是掌握二元一次方程需满足三个条件:首先是整式方程方程中共含有两个未知数所有未知项的次数都是一次不符合上述任何一个条件的都不叫二元一次方程3、D【分析】解方程组,用a表示x,y,把x,y代入x2y1中得到关于a的方程,解方程即可【详解】解:,+得2
6、x=2a+6,x=a+3,把代入,得a+3+y=-a+1,y=-2a-2,x2y1a+3+2(-2a-2)=-1,a=0,故选D【点睛】本题考查了解二元一次方程组以及二元一次方程的解,解方程组,用a表示x,y,把x,y代入x2y1中得到关于a的方程是解题的关键4、A【分析】把与的值代入方程计算即可求出的值【详解】解:把代入方程,得,解得故选:【点睛】本题考查了二元一次方程组的解,方程组的解即为能使方程组中两方程都成立的未知数的值5、A【分析】把各个选项答案带进去验证是否成立即可得出答案【详解】解:A、代入中,方程左边 ,边等于右边,故此选项符合题意;B、代入中,方程左边 ,左边不等于右边,故此
7、选项不符合题意;C、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;D、代入中,方程左边 ,左边不等于右边,故此选项不符合题意;故选A【点睛】本题主要考查二元一次方程的解的定义,熟知定义是解题的关键:使二元一次方程两边相等的一组未知数的值,叫做二元一次方程的一组解6、D【分析】根据题目中的等量关系列出二元一次方程组即可【详解】解:设一枚黄金的重量为x两,一枚白银的重量为y两,则可列方程组为故选:D【点睛】此题考查了列二元一次方程组,解题的关键是根据题意找到题目中的等量关系7、A【分析】利用代入消元法把代入,即可求解【详解】解:,把代入,得:故选:A【点睛】本题主要考查了解二元一次方程组
8、,解题的关键是熟练掌握二元一次方程组数为解法代入消元法和加减消元法8、B【分析】根据二元一次方程的定义,即含有两个未知数,并且未知数项的次数为1的整式方程是二元一次方程判断即可;【详解】中x的次数为2,故A不符合题意;是二元一次方程,故B符合题意;中不是整式,故C不符合题意;中y的次数为2,故D不符合题意;故选B【点睛】本题主要考查了二元一次方程的定义,准确分析判断是解题的关键9、D【分析】根据等量关系“顺水时间顺水速度=90、逆水时间逆水速度=90”以及顺水、逆水速度与静水速度、水流速度的关系即可解答【详解】解:根据题意可得,顺水速度=x+y,逆水速度=x-y,化简得故选:D【点睛】考查主要
9、考查了用二元一次方程组解决行程问题,掌握顺水路程及逆水路程的等量关系以及顺水速度=静水速度+水流速度、逆水速度=静水速度一水流速度是解答本题的关键10、A【分析】观察两方程发现y的系数相等,故将两方程相减消去y即可得到关于x的一元一次方程【详解】解:解方程组,由-消去未知数y,所得到的一元一次方程是2x=9,故选:A【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:加减消元法与代入消元法二、填空题1、【解析】【分析】先移项,然后将的系数化为1,即可求解【详解】解:故答案为:【点睛】此题考查了解二元一次方程,解题的关键是将其中一个数看做已知数,另一个数看做未知数2、 【解析】【
10、分析】根据加减消元的方法求解即可【详解】解:用加减法解方程组时,由+,得,两边同时除以6,得,由,得,两边同时除以2,得,所以原方程组的解为故答案是:,【点睛】本题考查了解二元一次方程组,利用了消元的思想,消元的方法有:代入消元法与加减消元法3、29【解析】【分析】可以设最小的正方形的边长为x,第二小的正方形的边长为y,根据已知AB=CD=32cm,可得到两个关于x、y的方程,求方程组即可得解,然后求矩形另一边AD的长即可,仍可用xy表示出来【详解】解:设最小的正方形的边长为x,第二小的正方形的边长为y,将各个正方形的边长都用x和y表示出来(如图),根据AB=CD=32cm,可得,解得:,矩形
11、的另一边AD=x+2y+y+2y=x+5y=29cm故答案为:29【点睛】本题考查了整式乘法运算的应用,二元一次方程组的应用,解题的关键是读懂图意根据矩形的性质列出方程组并求解4、【解析】【分析】先将化成,然后再代入化简即可【详解】解:,故答案是:【点睛】本题考查了利用代入消元法解二元一次方程及其应用,熟练掌握运算法则是解本题的关键5、1【解析】【分析】把代入方程得出,再变形,最后代入求出即可【详解】解:是关于、的方程的一组解,代入得:,故答案是:1【点睛】本题考查了二元一次方程的解和求代数式的值,解题的关键是能够整体代入求值三、解答题1、,【分析】根据x、y互为相反数得出y=x,代入方程组中
12、的两个方程求解即可【详解】解:因为,的值互为相反数,所以将代入中,得,解得,所以,所以原方程组的解是,将,代入中,得:【点睛】本题考查相反数、解二元一次方程组,理解相反数的意义以及二元一次方程组的解,正确求出方程组的解是解答的关键2、(1);(2)【分析】(1)利用加减消元法解方程组,即可得到答案;(2)先把方程进行整理,然后利用加减消元法解方程组,即可得到答案【详解】解:(1),由,得,把代入,解得,(2),方程组整理得,由得:2x6,解得:x3,把x3代入得63y1,解得:;所以方程组的解为【点睛】此题考查了解二元一次方程组,熟练掌握加减消元法解方程组是解本题的关键3、当m=-3时,;当m
13、=-2时,;当m=0时,【分析】由第二个方程得到x=2y,然后利用代入消元法求出y,再根据方程组的解是正整数求出m的值,进而求出方程的解即可【详解】解:,由得,x=2y,代入得,4y+my=4,y=,方程组的解是正整数,4+m=1或4+m=2或4+m=4,解得m=-3或m=-2或m=0,当m=-3时,;当m=-2时,;当m=0时,【点睛】本题考查了二元一次方程组的解,用m表示出y,再根据题意确定一个方程的正整数解是解题的关键4、(1);(2)【分析】(1)把代入得出3(y+3)+2y14,求出y,把y1代入求出x即可;(2)3-4得: x3,把x3代入求出y即可【详解】解:(1)(代入法),把
14、代入得:3(y+3)+2y14,解得:y1,把y1代入得:x1+34,所以方程组的解是;(2)(加减法)3-4得: x3,把x3代入得:6+3y12,解得:y2,所以方程组的解【点睛】本题考查了解二元一次方程组,能把二元一次方程组转化成一元一次方程是解此题的关键5、(1) ;(2)【分析】(1)把代入,得到 ,再把 代入,得到 ,即可求解;(2)由3+,得到 ,再把代入,得到 ,即可求解【详解】解:(1) 把代入,得: ,解得: ,把 代入,得: ,解得: ,所以原方程组的解为 ;(2)由3+,得: ,解得: ,把代入,得: ,解得: ,所以原方程组的解为【点睛】本题主要考查了解二元一次方程组,熟练掌握二元一次方程组的解法加减消元法和代入消元法是解题的关键