《【真题汇编】2022年山东省寿光市中考数学历年真题练习-(B)卷(含详解).docx》由会员分享,可在线阅读,更多相关《【真题汇编】2022年山东省寿光市中考数学历年真题练习-(B)卷(含详解).docx(16页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、 线 封 密 内 号学级年名姓 线 封 密 外 2022年山东省寿光市中考数学历年真题练习 (B)卷 考试时间:90分钟;命题人:教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列方程中是一元一次方程的是( )ABCD2、在一条东西向的
2、跑道上,小亮向东走了8米,记作“8米”;那么向西走了10米,可记作( )A2米B2米C10米D10米3、0.0000205用科学记数法表示为()A2.05107B2.05106C2.05105D2.051044、下列性质中,矩形具有而一般平行四边形不具有的是( )A对边相等B对角相等C对角线相等D对边平行5、PM2.5是指大气中直径小于或等于0.000 002 5米的颗粒物,将0.000 002 5用科学记数法表示为()A0.2510-5 B2.510-5B2.510-6C2.510-76、在式子中,分式的个数是()A2B3C4D57、若一次函数y(m1)xm的图象经过第二、三、四象限,则m的
3、取值范围是( )Am0Bm1C0m1Dm18、要使二次根式有意义,则x的取值范围是( )Ax3Bx3Cx3Dx39、如图,正方形边长为4,对角线上有一动点,过作于,于,连结,则的最小值为( )AB2C4D10、三条线段,分别满足下列条件,其中能构成三角形的是( )A,BCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、甲乙两地相距50千米星期天上午8:00小聪同学在父亲陪同下骑山地车从甲地前往乙地2小时后,小明的父亲骑摩托车沿同一路线也从甲地前往乙地,他们行驶的路程y(千米)与小聪行驶的时间x(小时)之间的函数关系如图所示,小明父亲出发_小时时,行进中的两车相距8千米
4、 线 封 密 内 号学级年名姓 线 封 密 外 2、若则_.3、如图,添加一个条件:_,使ADEACB,(写出一个即可)4、将抛物线y=x22x3向左平移5个单位,再向下平移2个单位,新抛物线的解析式为_5、已知P1(x1,y1),P2(x2,y2)两点都在反比例函数y的图象上,且y1y20,则x1和x2的大小关系是_三、解答题(5小题,每小题10分,共计50分)1、解不等式组,并把它们的解集表示在数轴上2、某服装制造厂要在开学前赶制2400套校服,为了尽快完成任务,厂领导合理调配,加强第一线人力,使每天完成的校服比原来多了20%,结果提前4天完成任务问原计划每天能完成多少套校服?3、甲、乙两
5、人同时从相距90千米的A地前往B地,甲乘汽车,乙骑摩托车,甲到达B地停留半个小时后返回A地,如图是他们离A地的距离(千米)与(时间)之间的函数关系图像(1)求甲从B地返回A地的过程中,与之间的函数关系式,并写出自变量的取值范围;(2)若乙出发后2小时和甲相遇,求乙从A地到B地用了多长时间?4、如图,直线yx+4与x轴交于A点,与y轴交于B点,动点P从A点出发,以每秒2个单位的速度沿AO方向向点O匀速运动,点E是点B以Q为对称中心的对称点,同时动点Q从B点出发,以每秒1个单位的速度沿BA方向向点A匀速运动,当一个点停止运动,另一个点也随之停止运动,连结PQ,设P,Q两点运动时间为t秒(0t2)(
6、1)直接写出A,B两点的坐标(2)当t为何值时,PQOB?(3)四边形PQBO面积能否是ABO面积的;若能,求出此时t的值;若不能,请说明理由;(4)当t为何值时,APE为直角三角形?(直接写出结果)5、用因式分解法解方程:-参考答案-一、单选题1、D【分析】 线 封 密 内 号学级年名姓 线 封 密 外 根据一元一次方程的定义逐一判断即可得到答案【详解】解:是分式方程,故A错误;是一元二次方程,故B错误;是二元一次方程,故C错误;是一元一次方程,故D正确;故选D【点睛】本题考查的是一元一次方程的定义,掌握一元一次方程的定义是解题的关键2、D【分析】向东为“+”,则向西为“-”,由此可得出答案
7、【详解】解:向东走8米,记作“+8米”,则向西走10米,记作“-10米”故选D【点睛】本题考查正数和负数的知识,解题关键是理解“正”和“负”的相对性,确定一对具有相反意义的量3、C【解析】【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定【详解】0.0000205=2.05105故选C【点睛】此题考查科学记数法,难度不大4、C【分析】由矩形的性质和平行四边形的性质即可得出结论【详解】解:矩形的对边相等,对角相等,对角线互相平分且相等;平行四边形的对边相等,对角相等,对角线互相平
8、分;矩形具有而平行四边形不具有的性质是对角线相等;故选C【点睛】本题考查了矩形的性质、平行四边形的性质;熟练掌握矩形和平行四边形的性质是解决问题的关键5、C【详解】试题分析:绝对值小于1的正数也可以利用科学记数法表示,一般形式为a10-n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定所以:0.0000025=2.510-6;故选C 线 封 密 内 号学级年名姓 线 封 密 外 【考点】科学记数法表示较小的数6、C【解析】【分析】判断分式的依据是看分母中是否含有字母,如果含有字母则是分式,如果不含有字母则不是分式【详解】分母中不含有字母
9、,因比它是整式,而不是分式分母中含有字母,因此是分式故选:C【点睛】此题考查分式的定义,解题关键在于知道判别分式的依据7、C【分析】根据一次函数的图象经过的象限和一次项的系数有关,当一次项系数大于零一次函数过一、三象限,当一次项系数小于零一次函数过二、四象限,再根据常数项判断即可.【详解】根据题意可得一次函数的图形过第二、三、四象限所以可得 所以 故选C.【点睛】本题主要考查一次函数图象的性质,关键在于判断一次项系数和常数项是否大于0.8、D【分析】根据“二次根式有意义”可知,本题考查二次根式的概念,根据二次根式的定义,进行求解【详解】解:由题意可得,即故本题选D【点睛】本题考查二次根式的意义
10、和性质,关键在于掌握被开方数必须是非负数9、A【分析】连接PB,由矩形性质可知EF=BP,由垂线段最短可知,当BPAC时,BP最小,利用正方形性质求得AC的长,从而利用三角形面积求得BP的长即可即可【详解】解:连接PB,正方形ABCD中,ABC=90四边形PFBE是矩形EF=BP当BPAC时,BP最小,即EF最小在正方形ABCD中,解得: 线 封 密 内 号学级年名姓 线 封 密 外 EF的最小值为故选:A【点睛】本题主要考查的是矩形的判定与性质,正方形性质的应用,关键是根据矩形的性质和三角形的面积公式解答10、C【分析】根据在三角形中任意两边之和大于第三边,任意两边之差小于第三边即可求解【详
11、解】A、当时,故该选项错误.B、设,分别为,则有,不符合三角形任意两边大于第三边,故错误;C、正确;D、设,分别为,则有,不符合三角形任意两边大于第三边,故错误.故选C.【点睛】本题利用了三角形三边的关系求解当边成比例时可以设适当的参数来辅助求解二、填空题1、或【详解】分析:根据图象求出小明和父亲的速度,然后设小明的父亲出发x小时两车相距8千米,再分相遇前和相遇后两种情况列出方程求解即可:由图可知,小明的速度为:363=12千米/时,父亲的速度为:36(32)=36千米/时,设小明的父亲出发x小时两车相距8千米,则小明出发的时间为(x+2)小时,根据题意得,或,解得或小明父亲出发或小时时,行进
12、中的两车相距8千米2、-2【解析】【分析】先把1-x+2y=1-(x-2y),然后利用整体代入的思想计算【详解】解:x-2y=3,1-x+2y=1-(x-2y)=1-3=-2故答案为-2【点睛】本题考查了代数式求值:先把代数式根据已知条件进行变形,然后利用整体思想进行计算3、ADE=ACB(答案不唯一)【详解】相似三角形的判定有三种方法:三边法:三组对应边的比相等的两个三角形相似;两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;两角法:有两组角对应相等的两个三角形相似.由此可得出可添加的条件: 线 封 密 内 号学级年名姓 线 封 密 外 由题意得,A=A(公共角),则添加:
13、ADE=ACB或AED=ABC,利用两角法可判定ADEACB;添加:,利用两边及其夹角法可判定ADEACB.4、y=(x+4)26【解析】【分析】根据平移规律:左加右减,上加下减,可得答案【详解】配方,得y=(x-1)2-4由题意,得y=(x-1+5)2-4-2,化简,得y=(x+4)2-6,故答案为:y=(x+4)2-6【点睛】此题主要考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减5、x1x2【分析】首先根据反比例函数的解析式,可判断函数的增减性,再利用y1y20,来判断x1和x2的大小.【详解】根据反比例函数的解析式y可得反比例函数在二、四象限,在x的范围内是增函
14、数,所以当y1y20,可得x1x2.【点睛】本题主要考查反比例函数的性质,应当熟练掌握,这是必考点.三、解答题1、,数轴见解析【分析】分别求出两个不等式的解集,然后求出两个解集的公共部分即可得解【详解】解:,解不等式得,解不等式得,在数轴上表示如下:所以不等式组的解集为:【点睛】本题主要考查了一元一次不等式组解集的求法,解题的关键是掌握其简便求法就是用口诀求解求不等式组解集的口诀:同大取大,同小取小,大小小大中间找,大大小小找不到(无解)2、原计划每天能完成100套校服【解析】【分析】 线 封 密 内 号学级年名姓 线 封 密 外 设原计划每天能完成x套校服,则实际每天能完成(120%)x套校
15、服,根据工作时间总工作量工作效率结合提前4天完成任务即可得出关于x的分式方程,解之经检验后即可得出结论【详解】设原计划每天能完成x套校服,则实际每天能完成(1+20%)x套校服,根据题意得:,解得:x100,经检验,x100是原方程的解且符合题意答:原计划每天能完成100套校服【点睛】本题考查了分式方程的应用,找准等量关系,正确列出分式方程是解题的关键3、(1)(2)3小时【分析】(1)设,根据题意得,解得(2)当时,骑摩托车的速度为(千米/时)乙从A地到B地用时为(小时)【详解】请在此输入详解!4、(1)A(4,0),B(0,4);(2)t;(3)不能,见解析;(4)当t为时,APQ为直角三
16、角形【分析】(1)分别令y0,x0求解即可得到点A、B的坐标;(2)利用平行线分线段成比例定理列式计算即可得解(3)作QHOA于H,先证明QAHBAO,利用相似比可得到QH4t,再利用四边形PQBO面积是ABO面积的得到SAPQSAOB,利用三角形面积公式得到2t(4t),然后解关于t的方程即可(4)分APQ90和AQP90两种情况,利用OAB的余弦列式计算即可得解【详解】解:(1)令y0,则x+40,解得x4,x0时,y4,OA4,OB4,点A(4,0),B(0,4);(2)在RtAOB中,由勾股定理得,AB4,点P的速度是每秒2个单位,点Q的速度是每秒1个单位,AP2t,AQABBQ4t,
17、若PQOB,则APQAOB90,则, 线 封 密 内 号学级年名姓 线 封 密 外 解得t;(3)如图,作QHOA于H,QHOB,QAHBAO,即,QH4t,当四边形PQBO面积是ABO面积的时,SAPQSAOB,2t(4t),整理得t24t+40,此时方程无实数解,四边形PQBO面积不能是ABO面积的(4)若APQ90,由(2)可知t;若AQP90,则cosOAB,解得t84,0t2,t的值为,当t为时,APQ为直角三角形【点睛】本题是一次函数综合题型,主要考查了一次函数与坐标轴的交点的求法,三角形的面积,平行线分线段成比例定理,相似三角形的判定和性质以及锐角三角函数,难点在于要分情况讨论5、【分析】方程左边分解因式后,利用两数相乘积为0,两因式中至少有一个为0转化为两个一元一次方程来求解;【详解】解:,(x- )(x+ )=0,可得:x-=0或x+=0,解得:【点睛】本题考查解一元二次方程-因式分解法,熟练掌握运算法则是解本题的关键