《2022年最新人教版九年级数学下册第二十八章-锐角三角函数综合训练试卷(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年最新人教版九年级数学下册第二十八章-锐角三角函数综合训练试卷(无超纲).docx(36页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版九年级数学下册第二十八章-锐角三角函数综合训练 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、将矩形纸片ABCD按如图所示的方式折起,使顶点C落在C处,若AB = 4,DE = 8,则sinCED为
2、()A2BCD2、在ABC中, ,则ABC一定是( )A直角三角形B等腰三角形C等边三角形D等腰直角三角形3、图是第七届国际数学教育大会(ICME)会徽,在其主体图案中选择两个相邻的直角三角形,恰好能组合得到如图所示的四边形若,则的值为( )ABCD4、如图,河坝横断面迎水坡的坡比为:,坝高m,则的长度为( )A6mBmC9mDm5、如图,在RtABC中,C90,BC1,以下正确的是( )ABCD6、一个物体从A点出发,沿坡度为1:7的斜坡向上直线运动到B,AB=30米时,物体升高()米AB3CD以上的答案都不对7、如图,在网格中,小正方形的边长均为1,点A、B、C都在格点上,则的正弦值是(
3、)A2BCD8、如图,某建筑物AB在一个坡度为i1:0.75的山坡BC上,建筑物底部点B到山脚点C的距离BC20米,在距山脚点C右侧同一水平面上的点D处测得建筑物顶部点A的仰角是42,在另一坡度为i1:2.4的山坡DE上的点E处测得建筑物顶部点A的仰角是24,点E到山脚点D的距离DE26米,若建筑物AB和山坡BC、DE的剖面在同一平面内,则建筑物AB的高度约为()(参考数据:sin240.41,cos240.91,tan240.45,sin420.67cos420.74,tan420.90)A36.7米 B26.3 米 C15.4米 D25.6 米9、小金将一块正方形纸板按图1方式裁剪,去掉4
4、号小正方形,拼成图2所示的矩形,若已知AB9,BC16,则3号图形周长为()A B C D10、如图,E是正方形ABCD边AB的中点,连接CE,过点B作BHCE于F,交AC于G,交AD于H,下列说法:;点F是GB的中点;SAHG=SABC其中正确的结论的序号是( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在上述网格中,小正方形的边长均为1,点A,B,O都在格点上,则AOB的正弦值是_2、如图,菱形ABCD中,ABC=120,AB=1,延长CD至A1,使DA1=CD,以A1C为一边,在BC的延长线上作菱形A1CC1D1,连接AA1,得到ADA1;再延
5、长C1D1至A2,使D1A2=C1D1,以A2C1为一边,在CC1的延长线上作菱形A2C1C2D2,连接A1A2,得到A1D1A2按此规律,得到A2020D2020A2021,记ADA1的面积为S1,A1D1A2的面积为S2,A2020D2020A2021的面积为S2021,则S2021=_3、如图,在正方形中,点为边中点,连接,与对角线交于点,连接,且与交于点,连接,则下列结论:;其中正确的是_(填序号即可)4、已知0a90,当a =_时,sina =;当a =_时,tana=5、如图,矩形ABCD中,AB4,AEAD,将ABE沿BE折叠后得到GBE,延长BG交CD于F点,若F为CD中点,则
6、BC的长为 _三、解答题(5小题,每小题10分,共计50分)1、(1)计算: ;(2)先化简,再求值:,其中a满足2、如图,建筑物上有一高为的旗杆,从D处观测旗杆顶部A的仰角为,观测旗杆底部B的仰角为,则建筑物的高约为多少米?(结果保留小数点后一位)(参考数据,)3、如图,内接于,交于点,垂足为点,连接, (1)求的度数;(2)过点作,垂足分别为点,连接OA,OC,OB,EH,FH,若的半径为1,求的值4、如图,在一次军事演习中,蓝方在一条东西走向的公路上的A处朝正南方向撤退,红方在公路上的B处沿南偏西60方向前进实施拦截红方行驶1000米到达C处后,因前方无法通行,红方决定调整方向,再朝南偏
7、西45方向前进了相同的距离,刚好在D处成功拦截蓝方求红蓝双方最初相距多远(结果不取近似值)5、如图,在菱形ABCD中,ABC60,经过点A的直线(不与BD垂直)与对角线BD所在直线交于点E,过点B,D分别作直线BD的垂线交直线AE于点F,H(1)当点E在如图位置时,求证:BFDHBD;(提示:延长DA交BF于G)(2)当点E在图、图的位置时,直接写出线段BF,DH,BD之间的数量关系,不需要证明;(3)在(1)、(2)的条件下,若DH1,BD4,则tanDHE -参考答案-一、单选题1、B【分析】由折叠可知,CD=CD=4,再根据正弦的定义即可得出答案【详解】解:纸片ABCD是矩形,CD=AB
8、,C=90,由翻折变换的性质得,CD=CD=4,C=C=90,故选:B【点睛】本题可以考查锐角三角函数的运用:在直角三角形中,锐角的正弦为对边比斜边2、D【分析】结合题意,根据乘方和绝对值的性质,得,从而得,根据特殊角度三角函数的性质,得,;根据等腰三角形和三角形内角和性质计算,即可得到答案【详解】解:,ABC一定是等腰直角三角形故选:D【点睛】本题考查了绝对值、三角函数、三角形内角和、等腰三角形的知识;解题的关键是熟练掌握绝对值、三角函数的性质,从而完成求解3、A【分析】在中,可得的长度,在中,代入即可得出答案【详解】解:,在中,在中,.故选:A【点睛】本题主要考查了解直角三角形的应用,熟练
9、掌握解直角三角形的方法进行计算是解决本题的关键.4、A【分析】根据迎水坡的坡比为:,可知,求出的长度,运用勾股定理可得结果【详解】解:迎水坡的坡比为:,即,解得,由勾股定理得,故选:【点睛】本题考查了解直角三角形的实际应用,勾股定理,熟知坡比的意义是解本题的关键5、C【分析】根据勾股定理求出AB,三角函数的定义求相应锐角三角函数值即可判断【详解】解:在RtABC中,C90,BC1,根据勾股定理AB=,cosA=,选项A不正确;sinA,选项B不正确;tanA,选项C正确;cosB,选项D不正确故选:C【点睛】本题主要考查锐角三角函数的定义,勾股定理,掌握锐角三角函数定义是解题的关键6、B【分析
10、】根据坡度即可求得坡角的正弦值,根据三角函数即可求解;【详解】坡比在实际问题中的应用解:坡度为1:7,设坡角是,则sin=,上升的高度是:30米故选B【点睛】本题主要考查了解直角三角形的应用,准确分析计算是解题的关键7、C【分析】根据网格的特点,勾股定理求得的长,进而根据勾股定理逆定理判定是直角三角形,进而根据正弦的定义求解即可【详解】解:是直角三角形,且是斜边故选C【点睛】本题考查了网格中勾股定理与勾股定理的逆定理的应用,正弦的定义,证明是直角三角形是解题的关键8、D【分析】如图所示,过E点做CD平行线交AB线段为点H,标AB线段和CD线段相交点为G和H由坡度为i1:0.75,BC20可得B
11、G=16,GC=12,由坡度为 i1:2.4,DE26可得DF=24,EF=10,分别在在中满足,在中满足化简联立得AB=25.6【详解】如图所示,过E点做CD平行线交AB线段为点H,标AB线段和CD线段相交点为G和H在中BC20,坡度为i1:0.75,在中DE26,坡度为 i1:2.4,在中满足,在中满足,即,其中BG=16、BG=12、BH=BG-EF=6、DF=24,代入化简得,令2-有,AB=25.6故选:D【点睛】本题考查了解直角三角形的应用,利用三角形的坡度和斜边长通过勾股定理可以求得三角形各边长度,再根据角度列含两个未知数的二元一次方程组,正确的列方程求解是解题的关键9、B【分析
12、】设 而AB9,BC16,如图,由(图1)是正方形,(图2)是矩形,4号图形为小正方形,得到 再证明再建立方程求解,延长交于 则 再利用勾股定理求解 从而可得答案.【详解】解:如图,由题意得:(图1)是正方形,(图2)是矩形,4号图形为小正方形, 设 而AB9,BC16, 结合(图1),(图2)的关联信息可得: 整理得: 解得: 经检验:不符合题意,取 延长交于 则 四边形是矩形, 所以3号图形的周长为: 故选B【点睛】本题考查的是矩形的判定与性质,正方形的性质,锐角三角函数的应用,一元二次方程的应用,从(图形1)与(图形2)中的关联信息中得出图形中边的相等是解本题的关键.10、D【分析】先证
13、明ABHBCE,得AH=BE,则,即,再根据平行线分线段成比例定理得:即可判断;设BF=x,CF=2x,则BC=x,计算FG= 即可判断;根据等腰直角三角形得:AC=AB,根据中得:即可判断;根据,可得同高三角形面积的比,然后判断即可【详解】解:四边形ABCD是正方形,AB=BC,HAB=ABC=90,CEBH,BFC=BCF+CBF=CBF+ABH=90,BCF=ABH,ABHBCE,AH=BE,E是正方形ABCD边AB的中点,BE=AB,即AH/BC,故正确;设BF=x,CF=2x,则BC=x,AH=x,故不正确;四边形ABCD是正方形,AB=BC,ABC=90,AC=AB,故正确;,故正
14、确故选D【点睛】本题属于四边形综合题,主要考查了正方形的性质、全等三角形的判定和性质、勾股定理等知识点,灵活应用相关知识点成为解答本题的关键二、填空题1、【解析】【分析】利用勾股定理求出AO、BO的长,再由=AB2=AOBC,得出BC,sinAOB可得答案【详解】解:如图,过点O作OEAB于点E,过点B作BCOA于点C由勾股定理,得AO=,BO=,=ABOE=AOBC,BC= =,sinAOB= =故答案为:【点睛】本题主要考查三角函数的综合应用,熟练掌握正弦函数的意义、勾股定理的应用及三角形的面积求法是解题的关键2、240383#324038【解析】【分析】由题意得BCD=60,AB=AD=
15、CD=1,则有ADA1为等边三角形,同理可得A1D1A2. A2020D2020A2021都为等边三角形,进而根据等边三角形的面积公式可得S1=34,S2=3,.由此规律可得Sn=322n-4,即可求解【详解】解:四边形是菱形,AB=AD=CD=1,ADBC,ABCD,ABC=120,BCD=60,ADA1=BCD=60,DA1=CD,DA1=AD,ADA1为等边三角形,同理可得A1D1A2. A2020D2020A2021都为等边三角形,过点B作BECD于点E,如图所示:BE=BCsinBCD=32,S1=12A1DBE=34A1D2=34,同理可得:S2=34A2D12=3422=3,S3
16、=34A3D22=3442=43,;由此规律可得:Sn=322n-4,S2021=3222021-4=240383;故答案为:240383【点睛】本题考查了菱形的性质,等边三角形的性质与判定及三角函数,解题的关键是熟练掌握以上知识点3、【解析】【分析】证ADEBCE和ADFCDF导角可知正确,利用三角函数表示出线段长,可得正确;证DCHBDH,可得正确,根据DCHHDC,可得错误【详解】解:四边形ABCD是正方形,点E是DC的中点,ABADBCCD,DECE,BCEADE90,ADEBCE(SAS)CBEDAE,BEAE,ADDC,ADFCDF45,DFDF,ADFCDF(SAS),DAEDC
17、F,DCFCBE,CBE+CEB90,DCF+CEB90,CHE90,CFBE,故正确;点为边中点, ,DAEDCFCBE,设,则,则,ADFCDF(SAS),FACF,解得,故正确;,DEHDEB,DEHBED,EDHDBE,DBE+CBE45,EDH+HDB45,HDBEBCECH,DCHBDH,即,故正确;,DAEDBH,DCHHDC,故错误, 故答案为:【点睛】本题考查了解直角三角形和相似三角形的判定与性质,解题关键是熟练运用相似三角形的性质进行推理证明4、 30 60【解析】【分析】根据特殊角的三角函数值可以得解【详解】解:因为,故答案为30;60【点睛】本题考查三角函数的应用,熟练
18、掌握特殊角的三角函数值是解题关键5、4【解析】【分析】延长BF交AD的延长线于点H,证明BCFHDF(AAS),由全等三角形的性质得出BC=DH,由折叠的性质得出A=BGE=90,AE=EG,设AE=EG=x,则AD=BC=DH=3x,得出EH=5x,由锐角三角函数的定义及勾股定理可得出答案【详解】解:延长BF交AD的延长线于点H,四边形ABCD是矩形,AD=BC,ADBC,A=BCF=90,H=CBF,在BCF和HDF中,BCFHDF(AAS),BC=DH,将ABE沿BE折叠后得到GBE,A=BGE=90,AE=EG,EGH=90,AE=AD,设AE=EG=x,则AD=BC=DH=3x,ED
19、=2x,EH=ED+DH=5x,在RtEGH中,sinH=,sinCBF=,AB=CD=4,F为CD中点,CF=2,BF=10,经检验,符合题意,BC=4,故答案为:4【点睛】本题考查了矩形的性质,折叠的性质,全等三角形的判定与性质,解直角三角形,勾股定理,熟练掌握折叠的性质是解题的关键三、解答题1、(1)0,(2),【解析】【分析】(1)先求特殊角三角函数值,再根据二次根式运算法则计算即可;(2)先运用分式运算法则进行化简,再解方程代入求值即可【详解】解:(1)=0(2)=解方程得,当时,分式无意义,把代入,原式=【点睛】本题考查了特殊角三角函数值和二次根式运算,分式化简求值,解题关键是熟练
20、运用相关法则进行计算,熟记三角函数值2、建筑物BC的高约为24.2米【解析】【分析】先根据等腰直角三角形的判定与性质可得,设,从而可得,再在中,利用正切三角函数解直角三角形即可得【详解】解:由题意得:,是等腰直角三角形,设,则,在中,即,解得,经检验,是所列分式方程的解,且符合题意,建筑物BC的高约为24.2米,答:建筑物BC的高约为24.2米【点睛】本题考查了等腰直角三角形的判定与性质、解直角三角形的应用,熟练掌握解直角三角形的方法是解题关键3、(1);(2)【解析】【分析】(1)根据圆周角定理,计算ABC的大小,利用互余原理计算BAD,最后,利用两个角的和,计算BAC;(2)证明,再求的值
21、【详解】(1)于点(2)如图过点作,垂足分别为点,四点共圆,同理可得,四点共圆,即,三点共线,在与中, ,即【点睛】本题考查了圆周角定理,四点共圆,圆内接四边形的性质,三角形相似的判定和性质,特殊角的三角函数值,勾股定理,熟练掌握圆周角定理,圆内接四边形的性质,三角形相似的判定和性质,特殊角的三角函数值,是解题的关键4、红蓝双方最初相距()米【解析】【分析】过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB的垂线,过D作AB的平行线,两线交于点F,则E=F=90,红蓝双方相距AB=DF+CE在RtBCE中,根据锐角三角函数的定义求出CE的长,同理,求出DF的长,进而可得出结论【详解
22、】解:过B作AB的垂线,过C作AB的平行线,两线交于点E;过C作AB的垂线,过D作AB的平行线,两线交于点F,则E=F=90,红蓝双方相距AB=DF+CE在RtBCE中,BC=1000米,EBC=60,CE=BCsin60=1000=500米在RtCDF中,F=90,CD=1000米,DCF=45,DF=CDsin45=1000=500米,AB=DF+CE=(500+500)米答:红蓝双方最初相距()米【点睛】本题考查了解直角三角形的应用-方向角问题,锐角三角函数的定义,正确理解方向角的定义,进而作出辅助线构造直角三角形是解题的关键5、(1)见解析;(2)或;(3)或【解析】【分析】(1)延长
23、DA交BF于G,先证明ABG是等边三角形,得到AG=AB=AD,然后证明AGFADH得到DH=GF,再求出即可得到答案;(2)如图所示,延长BA交DH于G,同理可证ABFAGH,得到,则;延长DA交BF延长线于G,同理可证,AG=AD,然后证明GAFDAH,得到,则;(3)如图所示,先根据结论求出,然后证明FBEHDE,得到,即,则,;然后对于图和图利用类似的方法求解即可【详解】解:(1)如图所示,延长DA交BF于G,四边形ABCD是菱形,ABC=60,ADC=ABC=60,AD=AB,BFBD,DHBD,FBD=HDB=90,BGD=60,ADH=120,DG=2BG,FGA=120,BAG
24、=ABD+ADB=60,ABG是等边三角形,AG=AB=AD,在AGF和ADH中,AGFADH(ASA),DH=GF,又,;(2)如图所示,延长BA交DH于G,同理可证ABFAGH,;如图所示,延长DA交BF延长线于G,同理可证,AG=AD,BFBD,DHBD,BGDH,FGA=HAD,又GAF=DAH,AG=AD,GAFDAH(AAS),;(3)如图所示,BFBD,DHBD,BF/DH,FBEHDE,即,;如图所示,此时不符合题意;如图所示,同理可得,EHDEFB,即,;故答案为:或【点睛】本题主要考查了全等三角形的性质与判定,菱形的性质,含30度角的直角三角形的性质,勾股定理,相似三角形的性质与判定,求正切值,等边三角形的性质与判定等等,解题的关键在于能够准确作出辅助线构造全等三角形