2022年精品解析沪科版八年级下册数学期末定向训练-B卷(含答案解析).docx

上传人:知****量 文档编号:28163188 上传时间:2022-07-26 格式:DOCX 页数:19 大小:446.61KB
返回 下载 相关 举报
2022年精品解析沪科版八年级下册数学期末定向训练-B卷(含答案解析).docx_第1页
第1页 / 共19页
2022年精品解析沪科版八年级下册数学期末定向训练-B卷(含答案解析).docx_第2页
第2页 / 共19页
点击查看更多>>
资源描述

《2022年精品解析沪科版八年级下册数学期末定向训练-B卷(含答案解析).docx》由会员分享,可在线阅读,更多相关《2022年精品解析沪科版八年级下册数学期末定向训练-B卷(含答案解析).docx(19页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、 线 封 密 内 号学级年名姓 线 封 密 外 沪科版八年级下册数学期末定向训练 B卷 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列命题正确的是( )A若,则B四条边相等的四边形是正四边形C有一组邻

2、边相等的平行四边形是矩形D如果,则2、如图是我国古代数学家赵爽在为周髀算经作注解时给出的“弦图”,它被第24届国际数学家大会选定为会徽,是国际数学界对我国古代数学伟大成就的肯定“弦图”是由四个全等的直角三角形和中间的小正方形拼成的一个大正方形,若直角三角形的两条直角边分别为a、b,大正方形边长为3,小正方形边长为1,那么ab的值为( )A3B4C5D63、冠状病毒属的病毒是具有囊膜、基因组为线性单股正链的RNA病毒,是自然界广泛存在的一大类病毒,冠状病毒可感染多种哺乳动物、鸟类在某次冠状病毒感染中,有3只动物被感染,后来经过两轮感染后共有363只动物被感染,若每轮感染中平均一只动物会感染x只动

3、物,则下面所列方程正确的是( )ABCD4、若关于x的一元二次方程有一个解为,那么m的值是( )A-1B0C1D1或-15、下列方程是一元二次方程的是( )ABCD6、实数a,b在数轴上的位置如图所示,化简的结果是( )ABCD7、关于x的一元二次方程有一个根为0,则k的值是( )A3B1C1或D或38、在下列四组数中,不是勾股数的一组是( )A15,8,7B4,5,6C24,25,7D5,12,139、下列条件中,不能判定一个四边形是平行四边形的是( ) 线 封 密 内 号学级年名姓 线 封 密 外 A一组对边平行且相等B对角线互相平分C两组对角分别相等D一组对边平行,另一组对边相等10、下

4、面各命题都成立,那么逆命题成立的是( )A邻补角互补B全等三角形的面积相等C如果两个实数相等,那么它们的平方相等D两组对角分别相等的四边形是平行四边形第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、已知a、b满足,则的值为_2、一个三角形的两边长分别为3和5,其第三边是方程13x+400的根,则此三角形的周长为 _3、已知一直角三角形的两直角边长分别为6和8,则斜边上中线的长度是_4、如果一个等腰三角形的底为8,腰长为5,则它的面积是_5、已知正比例函数的图象经过第一、三象限,且经过点(k,k+2),则k=_三、解答题(5小题,每小题10分,共计50分)1、在长方形AB

5、CD中,AB4,BC8,点P、Q为BC边上的两个动点(点P位于点Q的左侧,P、Q均不与顶点重合),PQ2(1)如图,若点E为CD边上的中点,当Q移动到BC边上的中点时,求证:APQE;(2)如图,若点E为CD边上的中点,在PQ的移动过程中,若四边形APQE的周长最小时,求BP的长;(3)如图,若M、N分别为AD边和CD边上的两个动点(M、N均不与顶点重合),当BP3,且四边形PQNM的周长最小时,求此时四边形PQNM的面积2、已知关于x的方程x(mx4)(x+2)(x2)(1)若方程只有一个根,求m的值并求出此时方程的根;(2)若方程有两个不相等的实数根,求m的值3、因式分解:4、解方程:(1

6、);(2)5、计算:()2-参考答案-一、单选题1、A【分析】利用等式的性质以及矩形、正方形、菱形的判定方法分别判断后即可确定正确的选项【详解】解:A、若,则,故此命题正确;B、四条边相等的四边形是菱形,故原命题不正确; 线 封 密 内 号学级年名姓 线 封 密 外 C、有一组邻边相等的平行四边形是菱形,故原命题不正确;D、如果,a0时,则,若时,此命题不正确,故选:A【点睛】本题考查了命题与定理以及等式的性质等知识,解题的关键是了解矩形及菱形的判定方法2、B【分析】根据大正方形的面积是9,小正方形的面积是1,可得直角三角形的面积,即可求得ab的值【详解】解:大正方形边长为3,小正方形边长为1

7、,大正方形的面积是9,小正方形的面积是1,一个直角三角形的面积是(9-1)4=2,又一个直角三角形的面积是ab=2,ab=4故选:B【点睛】本题考查了与弦图有关的计算,还要注意图形的面积和a,b之间的关系3、B【分析】由题意易得第一轮后被感染的动物的数量为(3+3x)只,第二轮后被感染的动物的数量为只,进而问题可求解【详解】解:由题意得:所列方程为,故选B【点睛】本题主要考查一元二次方程的应用,熟练掌握传播问题是解题的关键4、A【分析】将代入方程,得到关于的一元二次方程,解方程求解即可,注意二次项系数不为0【详解】解:关于x的一元二次方程有一个解为,故选A【点睛】本题考查了一元二次方程的解的定

8、义,一元二次方程的定义,解一元二次方程,掌握一元二次方程解的定义是解题的关键一元二次方程的解(根)的意义:能使一元二次方程左右两边相等的未知数的值称为一元二次方程的解一元二次方程定义,只含有一个未知数,并且未知数项的最高次数是2的整式方程叫做一元二次方程5、A【分析】由一元二次方程的定义判断即可【详解】A. 只含有一个未知数,并且是未知数的最高次数2的整式方程,是一元二次方程,符合题意,故正确 线 封 密 内 号学级年名姓 线 封 密 外 B. 有两个未知数,不符合题意,故错误C. 不是整式方程,不符合题意,故错误D. 有两个未知数,不符合题意,故错误故选:A【点睛】本题考查了一元二次方程的定

9、义,只含有一个未知数,并且未知数的最高次数2的整式方程,叫做一元二次方程6、D【分析】根据题意得出b01a,进而化简求出即可【详解】解:由数轴可得:b01a,则原式=a-b故选:D【点睛】本题主要考查了二次根式的性质与化简,正确得出a,b的符号是解题关键7、A【分析】把x=0代入原方程得到转化关于k的方程,然后结合二次项系数不等于0求解即可【详解】解:关于x的一元二次方程的一个根是0,-2k-3=0,且k+10,k=3故选A【点睛】本题主要考查了一元二次方程根的定义,一元二次方程的解法,一元二次方程的定义等知识点,熟练掌握一元二次方程根的定义是解题的关键8、B【分析】利用勾股数的定义(勾股数就

10、是可以构成一个直角三角形三边的一组正整数),最大数的平方=最小数的平方和,直接判断即可【详解】解:A、,故A不符合题意B、,故B符合题意C、,故C不符合题意D、,故D不符合题意故选:B【点睛】本题主要是考查了勾股数的判别,熟练掌握勾股数的定义,是求解该题的关键9、D【分析】根据平行四边形的判定方法一一判断即可; 线 封 密 内 号学级年名姓 线 封 密 外 【详解】解:A、一组对边平行且相等的四边形是平行四边形,故本选项不符合题意;B、对角线互相平分的四边形是平行四边形,故本选项不符合题意;C、两组对角分别相等的四边形是平行四边形,故本选项不符合题意;D、一组对边平行,另一组对边相等的四边形还

11、可能是等腰梯形,本选项符合题意;故选:D【点睛】本题考查平行四边形的判定方法,解题的关键是熟练掌握平行四边形的判定方法10、D【分析】逐个写出逆命题,再进行判断即可【详解】A选项,逆命题:互补的两个角是邻补角互补的两个角顶点不一定重合,该逆命题不成立,故A选项错误;B选项,逆命题:面积相等的两个三角形全等底为4高为6的等腰三角形和底为6高为4的等腰三角形面积相等,但这两个等腰三角形不全等,该逆命题不成立,故B选项错误;C选项,逆命题:如果两个实数的平方相等,那么这两个实数相等这两个实数也有可能互为相反数,该逆命题不成立,故C选项错误;D选项,逆命题:平行四边形是两组对角分别相等的四边形这是平行

12、四边形的性质,该逆命题成立,故D选项正确故答案选:D【点睛】本题考查判断命题的真假,写一个命题的逆命题把一个命题的条件和结论互换后的新命题就是这个命题的逆命题二、填空题1、【分析】根据二次根式有意义的条件列出不等式,求出a,进而求出b,根据有理数的乘方法则计算即可【详解】解:由题意得:3-a0,a-30,解得:a=3,则b=-5,b3=(-5)3=-125,故答案为:-125【点睛】本题考查的是二次根式有意义的条件,掌握二次根式的被开方数是非负数是解题的关键2、13【分析】先求13x+400的根,根据三角形存在性,后计算周长【详解】13x+400,=0,当第三边为5时,三边为3,5,5,三角形

13、存在,三角形的周长为3+5+5=13;当第三边为8时,三边为3,5,8,且3+5=8,三角形不存在, 线 封 密 内 号学级年名姓 线 封 密 外 三角形的周长为13;故答案为:13【点睛】本题考查了三角形的存在性,一元二次方程的解法,熟练掌握一元二次方程的解法是解题的关键3、5【分析】直角三角形中,斜边长为斜边中线长的2倍,所以求斜边上中线的长求斜边长即可【详解】解:在直角三角形中,两直角边长分别为6和8,则斜边长10,斜边中线长为105,故答案为 5【点睛】本题考查了直角三角形斜边上的中线等于斜边的一半,勾股定理,根据勾股定理求得斜边长是解题的关键4、【分析】先画好符合题意的图形,过作于

14、证明再利用勾股定理求解即可.【详解】解:如图,过作于 故答案为:【点睛】本题考查的是等腰三角形的性质,勾股定理的应用,掌握“作出适当的辅助线构建直角三角形,结合利用等腰三角形的三线合一证明”是解本题的关键.5、2【分析】先根据正比例函数的图象可得,再将点代入函数的解析式可得一个关于的一元二次方程,解方程即可得【详解】解:正比例函数的图象经过第一、三象限,由题意,将点代入函数得:,解得或(舍去),故答案为:2【点睛】 线 封 密 内 号学级年名姓 线 封 密 外 本题考查了正比例函数的图象、一元二次方程的应用,熟练掌握正比例函数的图象特点是解题关键三、解答题1、(1)见解析(2)4(3)4【分析

15、】(1)由“SAS”可证ABPQCE,可得AP=QE;(2)要使四边形APQE的周长最小,由于AE与PQ都是定值,只需AP+EQ的值最小即可为此,先在BC边上确定点P、Q的位置,可在AD上截取线段AF=DE=2,作F点关于BC的对称点G,连接EG与BC交于一点即为Q点,过A点作FQ的平行线交BC于一点,即为P点,则此时AP+EQ=EG最小,然后过G点作BC的平行线交DC的延长线于H点,那么先证明GEH=45,再由CQ=EC即可求出BP的长度;(3)要使四边形PQNM的周长最小,由于PQ是定值,只需PM+MN+QN的值最小即可,作点P关于AD的对称点F,作点Q关于CD的对称点H,连接FH,交AD

16、于M,交CD于N,连接PM,QN,此时四边形PQNM的周长最小,由面积和差关系可求解(1)解:证明:四边形ABCD是矩形,CD=AB=4,BC=AD=8,点E是CD的中点,点Q是BC的中点,BQ=CQ=4,CE=2,AB=CQ,PQ=2,BP=2,BP=CE,又B=C=90,ABPQCE(SAS),AP=QE;(2)如图,在AD上截取线段AF=PQ=2,作F点关于BC的对称点G,连接EG与BC交于一点即为Q点,过A点作FQ的平行线交BC于一点,即为P点,过G点作BC的平行线交DC的延长线于H点GH=DF=6,EH=2+4=6,H=90,GEH=45,CEQ=45,设BP=x,则CQ=BC-BP

17、-PQ=8-x-2=6-x,在CQE中,QCE=90,CEQ=45,CQ=EC,6-x=2,解得x=4,BP=4; 线 封 密 内 号学级年名姓 线 封 密 外 (3)如图,作点P关于AD的对称点F,作点Q关于CD的对称点H,连接FH,交AD于M,交CD于N,连接PM,QN,此时四边形PQNM的周长最小,连接FP交AD于T,PT=FT=4,QC=BC-BP-PQ=8-3-2=3=CH,PF=8,PH=8,PF=PH,又FPH=90,F=H=45,PFAD,CDQH,F=TMF=45,H=CNH=45,FT=TM=4,CN=CH=3,四边形PQNM的面积=PFPH-PFTM-QHCN=88-84

18、-63=7【点睛】本题是四边形综合题,考查了矩形的性质,全等三角形的判定和性质,轴对称求最短距离,直角三角形的性质;通过构造平行四边形和轴对称找到点P和点Q位置是解题的关键2、(1)当时,方程的根为;当时,方程的根为(2)且【分析】(1)先去括号,将方程进行化简为,再分和两种情况,分别解一元一次方程、利用一元二次方程根的判别式即可得;(2)直接根据一元二次方程根的判别式大于0即可得(1)解:方程可化为,分以下两种情况:当时,方程为,解得;当时,方程为关于的一元二次方程,则由一元二次方程根的判别式得:,解得,此时方程为,解得,综上,当时,方程的根为;当时,方程的根为;(2)解:方程为,若方程有两

19、个不相等的实数根,则, 线 封 密 内 号学级年名姓 线 封 密 外 解得且【点睛】本题考查了一元二次方程根的判别式等知识点,熟练掌握一元二次方程根的判别式是解题关键3、【分析】设 则 令 求解的值,再分解因式即可.【详解】解:设 则 令 即 【点睛】本题考查的是一元二次方程的解法,利用一元二次方程的求根公式分解因式,熟练的利用公式法解一元二次方程是解本题的关键.4、(1),(2),【分析】(1)原方程运用因式分解法求解即可;(2)原方程运用配方法求解即可(1),(2) ,【点睛】本题主要考查了解一元二次方程,熟练掌握一元二次方程的解法是解答此题的关键 线 封 密 内 号学级年名姓 线 封 密 外 5、【分析】先根据完全平方公式计算以及化简二次根式,再计算二次根式的乘除混合运算,最后合并同类二次项即可求解;【详解】解:,=,=,=【点睛】本题主要考查了二次根式的混合运算和完全平方公式,关键是熟练掌握计算法则正确进行计算

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁