《2022年强化训练北师大版八年级数学下册第一章三角形的证明章节练习试题(含解析).docx》由会员分享,可在线阅读,更多相关《2022年强化训练北师大版八年级数学下册第一章三角形的证明章节练习试题(含解析).docx(24页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、北师大版八年级数学下册第一章三角形的证明章节练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、ABC中,的对边分别为a,b,c,下列条件能判断ABC是直角三角形的是( )AB,CD2、如图,在ABC中,
2、AD是角平分线,且,若,则的度数是( )A45B50C52D583、如图,在ABC中,的垂直平分线交于点D,交于点E,连接,ABC的周长为26,的周长为16,则的长为( )A10B8C6D54、如图:将一张长为40cm的长方形纸条按如图所示折叠,若AB=3BC,则纸条的宽为( ) A12B14C16D185、如图,在ABC中,的垂直平分线交于点,垂足为,若,则的长为( )A2cmB4cmC5cmD6cm6、如图,在RtABC中,C=90,AC=12,AB=13,AB边的垂直平分线分别交AB、AC于N、M两点,则BCM的周长为()A18B16C17D无法确定7、下列条件:;,能判定是直角三角形的
3、有( )A4个B3个C2个D1个8、下列命题是真命题的是( )A等腰三角形的角平分线、中线、高线互相重合B一个三角形被截成两个三角形,每个三角形的内角和是90度C有两个角是60的三角形是等边三角形D在ABC中,则ABC为直角三角形9、下列三个说法:有一个内角是30,腰长是6的两个等腰三角形全等;有一个内角是120,底边长是3的两个等腰三角形全等;有两条边长分别为5,12的两个直角三角形全等其中正确的个数有( )A3B2C1D010、下列命题的逆命题是假命题的是()A同旁内角互补,两直线平行B对于有理数a,如果3a0,那么a0C有两个内角互余的三角形是直角三角形D在任何一个直角三角形中,都没有钝
4、角第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,ABC是等边三角形,点E在AC的延长线上,点D在线段AB上,连接ED交线段BC于点F,过点F作于点N,若,则AN的长为_2、如图,在边长为4,面积为的等边中,点、分别是、边的中点,点是边上的动点,求的最小值_3、如图,在ABC中,ABAC在AB、AC上分别截取AP,AQ,使APAQ再分别以点P,Q为圆心,以大于PQ的长为半径作弧,两弧在BAC内交于点R,作射线AR,交BC于点D若BC6,则BD的长为_4、如图,ABC中,A68,点D是BC上一点,BD、CD的垂直平分线分别交AB、AC于点E、F,则EDF_度5、已知
5、直角三角形ABC的三条边长分别为3,4,5,在ABC所在平面内画一条直线,将ABC分割成两个三角形,使其中的一个是等腰三角形,则这样的直线最多可画_条三、解答题(5小题,每小题10分,共计50分)1、如图,已知锐角ABC(1)尺规作图:作ABC的高AD(保留作图的痕迹,不要求写出作法);(2)若,AB+BD与DC有什么关系?并说明理由2、在ABC中,AB=AC,点D是直线BC上一点(不与B、C重合),以AD为一边在AD的右侧作ADE,使AD=AE,DAE =BAC,连接CE(1)如图1,当点D在线段BC上,如果BAC=90,则BCE= 度;(2)设BAC=,BCE=如图2,当点在线段BC上移动
6、,则,之间有怎样的数量关系?请说明理由;当点在直线BC上(线段BC之外)移动,则,之间有怎样的数量关系?请直接写出你的结论3、 “三等分角”是被称为几何三大难题的三个古希腊作图难题之一如图1所示的“三等分角仪”是利用阿基米德原理做出的这个仪器由两根有槽的棒PA,PB组成,两根棒在P点相连并可绕点P旋转,C点是棒PA上的一个固定点,点A,O可在棒PA,PB内的槽中滑动,且始终保持OAOCPCAOB为要三等分的任意角则利用“三等分角仪”可以得到APB AOB我们把“三等分角仪”抽象成如图2所示的图形,完成下面的证明已知:如图2,点O,C分别在APB的边PB,PA上,且OAOCPC求证:APB AO
7、B4、已知:如图,AD是等腰三角形ABC的底边BC上的中线,DEAB,交AC于点E求证:AED是等腰三角形5、如图,在ABC中,ABAC,AD是ABC的角平分线,FE是AC的垂直平分线,交AD于点F,连接BF求证:AFBF-参考答案-一、单选题1、D【分析】利用直角三角形的定义和勾股定理的逆定理逐项判断即可【详解】解:A、,且ABC180,60,故ABC不是直角三角形;B、,a2b2c2,故ABC不是直角三角形;C、A:B:C3:4:5,且ABC180,最大角C7590,故ABC不是直角三角形;D、,故ABC是直角三角形;故选:D【点睛】本题考查了勾股定理的逆定理:如果三角形的三边长a,b,c
8、满足a2b2c2,那么这个三角形就是直角三角形也考查了三角形内角和定理2、A【分析】根据角平分线性质求出DCA,再根据等腰三角形的性质和三角形的内角和定理求解C和B即可【详解】解:AD是角平分线,DCA=30,AD=AC,C=(180DCA)2=75,B=180BACC=1806075=45,故选:A【点睛】本题考查角平分线的性质、等腰三角形的性质、三角形的内角和定理,熟练掌握等腰三角形的性质是解答的关键3、D【分析】根据线段垂直平分线的性质可得即可得到结论【详解】解:的垂直平分线交于点D,交于点E,AD=CD,ABD的周长=AB+AD+BD=AB+BC=16,ABC的周长=AC+BC+AB=
9、26,AC=ABC的周长-ACE的周长=26-16=10,故答案为:D【点睛】本题主要考查了线段垂直平分线的性质:垂直平分线垂直且平分其所在线段;垂直平分线上任意一点,到线段两端点的距离相等4、B【分析】如图,延长NO交AD的延长线于点P,设BC=x,则AB=3x,利用折叠的性质和等腰直角三角形的性质可表示出纸条的宽MO,NO的长,从而可表示出纸条的长2PN的长,然后根据长方形纸条的长为40,可得到关于x的方程,解方程求出x的值,即可求出纸条的宽【详解】解:如图,延长NO交AD的延长线于点P, 设BC=x,则AB=3x, 折叠, AB=BM=CO=CD=PO=3x, 纸条的宽为:MO=NO=3
10、x+3x+x=7x, 纸条的长为:2PN=2(7x+3x)=20x=40 解得:x=2, 纸条的宽NO=72=14 故答案为:B【点睛】此题考查了折叠的性质,等腰直角三角形的性质,一元一次方程应用题,解题的关键是正确分析题目中的等量关系列出方程求解5、D【分析】由题意知,可求出的值【详解】解:由题意知在中又 故选D【点睛】本题考察了垂直平分线的性质,角的直角三角形的性质解题的关键在于灵活运用垂直平分线与角的直角三角形的性质6、C【分析】根据勾股定理求出BC的长,根据线段垂直平分线的性质得到MB=MA,根据三角形的周长的计算方法代入计算即可【详解】解:在RtABC中,C=90,AC=12,AB=
11、13,由勾股定理得,MN是AB的垂直平分线,MB=MA,BCM的周长=BC+CM+MB=BC+CM+MA=BC+CA=17,故选C【点睛】本题主要考查了线段垂直平分线的性质,勾股定理,熟知线段垂直平分线的性质是解题的关键7、C【分析】根据三角形的内角和定理以及勾股定理的逆定理即可得到结论【详解】解:即,ABC是直角三角形,故符合题意;A+B+C=180,C=AB,A+B+AB=180,即A=90,ABC是直角三角形,故符合题意;,设a=,b=,c=,则,ABC不是直角三角形,故不合题意;,C=180=75,故不是直角三角形;故不合题意综上,符合题意的有,共2个,故选:C【点睛】本题主要考查了直
12、角三角形的判定方法如果三角形中有一个角是直角,那么这个三角形是直角三角形;如果一个三角形的三边a,b,c满足a2+b2=c2,那么这个三角形是直角三角形8、C【分析】分别根据等腰三角形的性质、三角形的内角和定理、等边三角形的判定,直角三角形的判定即可判断【详解】A.等腰三角形中顶角角平分线、底边上的中线和底边上的高线互相重合,即三线合一,故此选项错误;B.三角形的内角和为180,故此选项错误;C.有两个角是60,则第三个角为,所以三角形是等边三角形,故此选项正确;D.设,则,故,解得,所以,此三角形不是直角三角形,故此选项错误故选:C【点睛】本题考查等腰三角形的性质,直角三角形的定义以及三角形
13、内角和,掌握相关概念是解题的关键9、C【分析】根据三角形全等的判定方法,等腰三角形的性质和直角三角形的性质判断即可【详解】解:当一个是底角是30,一个是顶角是30时,两三角形就不全等,故本选项错误;有一个内角是120,底边长是3的两个等腰三角形全等,本选项正确;当一条直角边为12,一条斜边为12时,两个直角三角形不全等,故本选项错误;正确的只有1个,故选:C【点睛】本题考查了全等三角形的判定定理,等腰三角形的性质和直角三角形的性质,熟练掌握全等三角形的判定定理是解题的关键10、D【分析】先写出每个选项中的逆命题,然后判断真假即可【详解】解:A、同旁内角互补,两直线平行的逆命题为:两直线平行,同
14、旁内角互补,是真命题,不符合题意;B、对于有理数a,如果3a0,那么a0的逆命题为:对于有理数a,如果a0,则3a0,是真命题,不符合题意;C、有两个内角互余的三角形是直角三角形的逆命题为:直角三角形有两个内角互余的,是真命题,不符合题意;D、在任何一个直角三角形中,都没有钝角的逆命题为:没有钝角的三角形是直角三角形,是假命题,符合题意;故选D【点睛】本题主要考查了逆命题,判定命题真假,解题的关键在于能够熟知相关知识进行求解二、填空题1、22【分析】作DGAC交BC于G,证明DFGEFC,设,则,根据求出的值和等边三角形的边长,进而可求AN的长【详解】解:作DGAC交BC于G,是等边三角形,D
15、GB=ACB=60,DGF=ECF,DFG=EFC,DFGEFC,DGB=ACB=60,是等边三角形,设,则,则,AN的长为27-5=22,故答案为:22【点睛】本题考查了等边三角形的性质与判定,全等三角形的判定与性质,直角三角形的性质,解题关键是恰当作辅助线构建全等三角形,利用全等得出线段之间的关系求解2、【分析】连接,交于点,连接,则的最小值为,再由已知求出的长即可【详解】解:连接,交于点,连接,是等边三角形,是边中点,点与点关于对称,的最小值为,是的中点,的面积为,的最小值为,故答案为:【点睛】本题考查了等边三角形的性质,将军饮马河原理,熟练掌握等边三角形的性质,灵活运用将军饮马河原理是
16、解题的关键3、3【分析】根据题意依据等腰三角形的性质,即可得到BD=BC,进而分析计算即可得出结论【详解】解:由题可得,AR平分BAC,又AB=AC,AD是三角形ABC的中线,BD=BC=6=3.故答案为:3【点睛】本题主要考查基本作图以及等腰三角形的性质,注意掌握等腰三角形的顶角平分线、底边上的中线、底边上的高相互重合4、68【分析】根据线段垂直平分线的性质得到EBED,FDFC,则EDBB,FDCC,从而可以得到EDB+FDCB+C,再由EDF180(EDB+FDC),A180(B+C),即可得到EDFA68【详解】解:BD、CD的垂直平分线分别交AB、AC于点E、F,EBED,FDFC,
17、EDBB,FDCC,EDB+FDCB+C,EDF180(EDB+FDC),A180(B+C),EDFA68故答案为:68【点睛】本题主要考查了线段垂直平分线的性质,三角形内角和定理,等腰三角形的性质与判定,熟知线段垂直平分线的性质是解题的关键5、6【分析】根据等腰三角形的性质分别利用AB,AC为底以及为腰得出符合题意的图形即可【详解】解:如图所示:当BC2=CC2,AC1=AC,BC=BC3,BC=CC4,BC=CC5,C6A=C6B都能得到符合题意的等腰三角形故答案为:6【点睛】此题主要考查了等腰三角形的判定以及应用设计与作图等知识,正确利用图形分类讨论得出是解题关键三、解答题1、(1)见详
18、解;(2),理由见详解【分析】(1)以点A圆心,适当长为半径画弧,交BC于两点,再以这两点为圆心,大于这两点的距离的一半为半径画弧,交于一点,然后连接即可;(2)在DC上截取DE=BD,连接AE,由题意易得AB=AE,则有B=AEB,进而可得AE=EC,最后问题可求解【详解】解:(1)如图所示,即为所求;(2),理由如下:在DC上截取DE=BD,连接AE,如图所示:,AB=AE,B=AEB,AE=EC=AB,【点睛】本题主要考查等腰三角形的性质与判定及线段垂直平分线的性质定理,熟练掌握等腰三角形的性质与判定及线段垂直平分线的性质定理是解题的关键2、(1)90;(2),见解析;或【分析】(1)由
19、等腰直角三角形的性质可得ABCACB45,由“SAS”可证BADCAE,可得ABCACE45,可求BCE的度数;(2)由“SAS”可证ABDACE得出ABDACE,再用三角形的内角和即可得出结论;分两种情况,由“SAS”可证ABDACE得出ABDACE,再用三角形的内角和即可得出结论【详解】解:(1),AB=AC,AD=AE, 在和中,(2)或 理由:,即在和中, ,如图:,即在和中, ,综上所述:点D在直线BC上移动,+180或【点睛】本题主要考查全等三角形的判定及性质,等腰三角形的性质和三角形内角和定理,掌握全等三角形的判定方法及性质是关键3、见解析【分析】由,得出为等腰三角形,由外角的性
20、质及等量代换得,再次利用外角的性质及等量代换得,即可证明【详解】解:,为等腰三角形,由外角的性质得:,再由外角的性质得:,【点睛】本题考查了等腰三角形、外角的性质、解题的关键是掌握外角的性质及等量代换的思想进行求解4、见解析【分析】根据等腰三角形的性质得到BAD=CAD,根据平行线的性质得到ADE=BAD,等量代换得到ADE=CAD于是得到结论【详解】解:ABC是等腰三角形,AB=AC,AD是底边BC上的中线,BAD=CAD,DEAB,ADE=BAD,ADE=CAD,AE=ED,AED是等腰三角形【点睛】本题主要考查等腰三角形的判定与性质以及平行线的性质,熟练掌握等腰三角形的判定和性质定理是解题的关键5、见解析【分析】连接FC,由等腰三角形的性质可得BF=FC;再由AF=FC,即可得AF=BF【详解】连接FC,如图AB=AC,AD平分BACADBC,BD=CDAD是BC的垂直平分线BF=FCFE是AC的垂直平分线AF=FCAF=BF【点睛】本题考查了等腰三角形的性质,线段垂直平分线的判定与性质,由FE是AC的垂直平分线想到连接FC是关键