2022年人教版九年级数学下册第二十七章-相似课时练习练习题(含详解).docx

上传人:知****量 文档编号:28160902 上传时间:2022-07-26 格式:DOCX 页数:31 大小:553.53KB
返回 下载 相关 举报
2022年人教版九年级数学下册第二十七章-相似课时练习练习题(含详解).docx_第1页
第1页 / 共31页
2022年人教版九年级数学下册第二十七章-相似课时练习练习题(含详解).docx_第2页
第2页 / 共31页
点击查看更多>>
资源描述

《2022年人教版九年级数学下册第二十七章-相似课时练习练习题(含详解).docx》由会员分享,可在线阅读,更多相关《2022年人教版九年级数学下册第二十七章-相似课时练习练习题(含详解).docx(31页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、人教版九年级数学下册第二十七章-相似课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,直线abc,直线m分别交直线a,b,c于点A,B,C,直线n分别交直线a,b,c于点D,E,F若,则的值为

2、()ABC2D32、在比例尺为1:5000的南京市城区地图上,太平南路的长度约为25 cm,它的实际长度约为 ( )A500 cmB125mC1250 cmD1250 m3、如图,在中,点为边上一点,将沿直线翻折得到,与边交于点E,若,点为中点,则的长为( )AB6CD4、如图,在ABC中,点D在边AB上,若ACDB,AD3,BD4,则AC的长为( )A2BC5D25、如图,直线l1l2,直线AB、CD相交于点E,若AE4,BE8,CD9,则线段CE的长为()A3B5C7D96、甲、乙两城市的实际距离为500km,在比例尺为1:10000000的地图上,则这两城市之间的图上距离为( )A0.5

3、cmB5cmC50cmD500cm7、如图,BC2,则AB的长为( )A6B5C4D38、根据下列条件,判断ABC与ABC能相似的条件有()CC90,A25,B65;C90,AC6cm,BC4cm,AC9cm,BC6cm;AB10cm,BC12cm,AC15cm,AB150cm,BC180cm,AC225cm;ABC与ABC是有一个角为80等腰三角形A1对B2对C3对D4对9、如图,在Rt中,在Rt中,点在上,交于点,交于点,当时,的长为( )A4B6CD10、若,则的值为( )ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在RtABC中,C90正方形E

4、FCD的三个顶点E,F,D分别在边AB,BC,AC上已知AC15,BC5,则正方形的边长为_ 2、如图,双曲线经过Rt斜边上的中点A,与BC交于点D,则_3、如图,正方形ABCD的边长为4,点E为边AD上一个动点,点F在边CD上,且线段EF4,点G为线段EF的中点,连接BG、CG,则BG+CG的最小值为 _4、如图,四边形与四边形位似,其位似中心为点O,且,则_5、如图,平行四边形ABCD中,AE:EB2:3,DE交AC于F,CDF的面积为20cm2,则AEF的面积为 _cm2三、解答题(5小题,每小题10分,共计50分)1、如图,过矩形ABCD(ADAB)的对角线AC的中点O作AC的垂直平分

5、线EF,分别交AD、BC于点E、F,分别连接AF和CE(1)判断四边形AFCE是什么特殊四边形,并证明;(2)过点E作AD的垂线交AC于点P,求证:2AE2ACAP2、如图,为坐标原点,两点坐标分别为,(1)以为位似中心在轴左侧将放大两倍,并画出图形;(2)分别写出,两点的对应点,的坐标;(3)已知为内部一点,写出的对应点的坐标3、已知:在EFG中,EFG90,EFFG,且点E,F分别在矩形ABCD的边AB,AD上(1)如图1,填空:当点G在CD上,且DG1,AE2,则EG ;(2)如图2,若F是AD的中点,FG与CD相交于点N,连接EN,求证:AEFFEN;(3)如图3,若AEAD,EG,F

6、G分别交CD于点M,N,求证:MG2MNMD4、如图1,已知ABC,CAB45,AB7,AC3,CDAB于点DE是边BC上的动点,以DE为直径作O,交BC为F,交AB于点G,连结DF,FG(1)求证:BCDFDB(2)当点E在线段BF上,且DFG为等腰三角形时,求DG的长(3)如图2,O与CD的另一个交点为P若射线AP经过点F,求的值5、如图,网格中每个小正方形的边长都是1(1)在图中画一个格点DEF,使ABCDEF,且相似比为1:2;(2)仅用无刻度的直尺作出(1)中DEF的外接圆的圆心-参考答案-一、单选题1、A【解析】【分析】先由得出,再根据平行线分线段成比例定理即可得到结论【详解】解:

7、,故选:A【点睛】本题考查了平行线分线段成比例定理,解题的关键是掌握三条平行线截两条直线,所得的对应线段成比例2、D【解析】【分析】首先设这两地的实际距离是xcm,然后根据比例尺的性质,即可得方程:,解此方程即可求得答案,注意统一单位【详解】解:设它的实际长度为xcm,根据题意得:,解得:x=125000,125000cm=1250m,它的实际长度为1250m故选:D【点睛】本题考查了比例尺的性质此题难度不大,解题的关键是理解题意,根据比例尺的性质列方程,注意统一单位3、A【解析】【分析】由折叠的性质可得,然后证明,得到,设,即可推出,从而得到,则,从而得到,再由,求解即可【详解】解:由折叠的

8、性质可得,AB=AC,B=C,又,E是CD的中点,DE=CE,设,解得,故选A【点睛】本题主要考查了等腰三角形的性质,相似三角形的性质与判定,折叠的性质,解题的关键在于能够熟练掌握相似三角形的性质与判定条件4、B【解析】【分析】求出AB,通过AA证ACDABC,推出,代入求出即可【详解】解:AD3,BD4,AB7,AA,ACDB,ACDABC,AC2ADAB21,AC,故选:B【点睛】本题考查了相似三角形的性质和判定的应用,关键是推出ACDABC并进一步得出比例式5、A【解析】【分析】根据直线l1l2,可证ACEBDE,可以推出,则,即可得到CE=3【详解】解:直线l1l2,ACEBDE,CE

9、=3,故选A【点睛】本题主要考查了相似三角形的性质与判定,解题的关键在于能够根据题意证明ACEBDE6、B【解析】【分析】先将千米换单位为厘米,然后设这两城市之间的图上距离为,根据比例计算即可得【详解】解:,设这两城市之间的图上距离为,则:,解得:,故选:B【点睛】题目主要考查比例的计算,理解题意,注意单位变换是解题关键7、C【解析】【分析】由平行线分线段成比例,可得比例式:,代入值,利用线段间的关系,直接求解答案【详解】解:且, , , 故选:C【点睛】本题主要是考查了平行线分线段成比例,正确找到对应边长的比例式,是求解这类问题的关键8、C【解析】【分析】根据相似三角形常用的判定方法对各个选

10、项进行分析从而得到答案【详解】解:(1)CC90,A25B65CC,BB(2)C90,AC6cm,BC4cm, ,AC9,BC6,(3)AB10cm,BC12cm,AC15cm,AB150cm,BC180cm,AC225cm;(4)没有指明80的角是顶角还是底角无法判定两三角形相似共有3对故选:C【点睛】此题主要考查相似三角形的判定方法:(1)三边法:三组对应边的比相等的两个三角形相似;(2)两边及其夹角法:两组对应边的比相等且夹角对应相等的两个三角形相似;(3)两角法:有两组角对应相等的两个三角形相似9、B【解析】【分析】如图作PQAB于Q,PRBC于R由QPERPF,推出,可得PQ2PR2

11、BQ,由PQ/BC,可得AQ:QP:APAB:BC:AC3:4:5,设PQ4x,则AQ3x,AP5x,BQ2x,可得2x3x6,求出x即可解决问题【详解】解:如图作PQAB于Q,PRBC于RPQBQBRBRP90,四边形PQBR是矩形,QPR90MPN,QPERPF,QPERPF,PQ2PR2BQ,PQ/BC,AQPABC,AQ:QP:APAB:BC:AC3:4:5,设PQ4x,则AQ3x,AP5x,BQ2x,2x3x6,x,AP5x6故选:B【点睛】本题考查相似三角形的判定和性质、勾股定理、矩形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造相似三角形解决问题10、A【解析】【分析】

12、设,可得,再代入求值即可【详解】解: , 设, ,故选:A【点睛】本题考查的是比例的基本性质,求代数式的值,掌握设参数法解决比例问题是解题的关键二、填空题1、#【解析】【分析】根据正方形的性质和相似三角形的判定方法可知,可得到关于正方形边长的比例式,代入数值计算即可【详解】解:,四边形是正方形,AED=B,ADE=C=90,若设正方形的边长为,ED=CD=x,又AC15,BC5,AD=AC-CD=15-x,解得:,则正方形的边长为故答案为【点睛】本题考查了正方形的性质、相似三角形的判定和性质,解一元一次方程,解题的关键是注意图形中的相等线段的替换2、14【解析】【分析】过A作轴于点E,根据反比

13、例函数的比例系数k的几何意义可得,由,得,相似三角形面积的比等于相似比的平方,据此即可求得,从而求得k的值【详解】如图,作轴,则,轴,点A是OB中点,解得:,反比例函数过第一象限,故答案为:14【点睛】本题考查反比例函数系数k的几何意义、相似三角形的判定与性质,熟知“过双曲线上的任意一点分别向两条坐标轴作垂线,与坐标轴围成的矩形面积就等于”是解题的关键3、5【解析】【分析】因为DGEF2,所以G在以D为圆心,2为半径圆上运动,取DI1,可证GDICDG,从而得出GICG,然后根据三角形三边关系,得出BI是其最小值【详解】解:如图,在RtDEF中,G是EF的中点,DG,点G在以D为圆心,2为半径

14、的圆上运动,在CD上截取DI1,连接GI,GDICDG,GDICDG,IG,BG+BG+IGBI,当B、G、I共线时,BG+CG最小BI,在RtBCI中,CI3,BC4,BI5,故答案是:5【点睛】本题考查了相似三角形的性质与判定,圆的概念,求得点的运动轨迹是解题的关键4、【解析】【分析】利用位似的性质得到,然后根据比例的性质求解【详解】解:四边形ABCD与四边形EFGH位似,其位似中心为点O,故答案为:【点睛】本题考查了位似变换:位似的两个图形必须是相似形,对应点的连线都经过同一点;对应边平行或共线5、#3.2【解析】【分析】由DCAB可知,AEFCDF,再运用相似三角形的性质:面积之比等于

15、相似比的平方即可解决问题【详解】解:四边形ABCD是平行四边形,DCAB,DCAB,AEFCDFAE:EB2:3,设AE2a,则BE3a,DC5a;AEFCDF,而,CDF的面积为20cm2,AEF的面积为cm2故答案为:【点睛】本题主要考查了平行四边形的性质,相似三角形的性质与判定,解题的关键在于能够熟练掌握相似三角形的性质与判定条件三、解答题1、(1)四边形AFCE是菱形,见解析;(2)见解析【解析】【分析】(1)由过矩形ABCD(ADAB)的对角线AC的中点O作AC的垂直平分线EF,易证得AOECOF,即可得EOFO,则可证得四边形AFCE是平行四边形,又由EFAC,可得四边形AFCE是

16、菱形;(2)由AEPAOE90,EAPOAE,可证得AOEAEP,又由相似三角形的对应边成比例,即可证得2AE2ACAP【详解】证明:(1)四边形AFCE是菱形理由:由已知可知:AOCO,四边形ABCD是矩形,ADBC,EAOFCO,AEOCFO,在AOE和COF中,EAO=FCOAEO=CFOAO=CO,AOECOF(AAS),EOFO,四边形AFCE是平行四边形,ACEF,四边形AFCE是菱形;(2)AEPAOE90,EAPOAE,AOEAEP,AOAEAEAP,AE2AOAP,又AC2AO,2AE2ACAP【点睛】本题考查了相似三角形的判定与性质、平行四边形的判定与性质、矩形的性质、菱形

17、的判定与性质以及全等三角形的判定与性质注意掌握数形结合思想的应用2、(1)画图见解析;(2)点的坐标为(-6,2),点的坐标为(-4,-2);(3)点的坐标为(-2x,-2y)【解析】【分析】(1)利用位似变换的性质分别作出B、C的对应点,然后顺次连接O,即可;(2)根据(1)中所作图形即可得到,两点的坐标;(3)根据位似图形上对应点的坐标的横纵坐标对应比相同进行求解即可【详解】解:(1)如图所示,OBC即为所求;(2)如图所示,点的坐标为(-6,2),点的坐标为(-4,-2);(3)OBC是OBC以O为位似中心,位似比为2的对应图形,点M(x,y)为OBC内部一点,点M的对应点的坐标为(-2

18、x,-2y)【点睛】本题主要考查了画位似图形和求位似图形上的对应点的坐标,解题的关键在于能够熟练掌握位似图形的相关知识3、(1);(2)见解析;(3)见解析【解析】【分析】(1)先用同角的余角相等,判断出AEF=DFG,得出EFFG=,最后利用勾股定理得出结论;(2)先判断出AHFDNF,得出FH=FN,进而根据EFN=HFE=90,EF=EF,判断出HFENFE,即可得出结论;(3)先判断出AF=PG,PF=AE,进而判断出PG=PD,得出MDG=45,进而得出FGE=GDM,判断出MGNMDG,即可得出结论【详解】解:(1)四边形ABCD是矩形,A=D=90,AEF+AFE=90,EFG=

19、90,AFE+DFG=90,AEF=DFG,EF=FG,AEFDFG(AAS),DGAF=1,AEFD=2,EFG90,EFFG,EFFG=,;(2)如图2, ,延长NF,EA相交于H,AFH=DFN,由(1)知,EAF=D=90,HAF=D=90,点F是AD的中点,AF=DF,AHFDNF(ASA),AH=DN,FH=FN,EFN=HFE=90,EF=EF,HFENFE,AEFFEN;(3)如图3,过点G作GPAD交AD的延长线于P,P=90,同(1)的方法得,AEFPFG(AAS),AF=PG,PF=AE,AE=AD,PF=AD,AF=PD,PG=PD,P=90,PDG=45,MDG=45

20、,在RtEFG中,EF=FG,FGE=45,FGE=GDM,GMN=DMG,MGNMDG,MG2=MNMD【点睛】本题考查了全等三角形的判定和性质,相似三角形的判定和性质,等腰三角形的判定和性质,判断出FGE=GDM,是解本题的关键4、(1)见解析;(2),7225,2;(3)2516【解析】【分析】(1)由DE为直径得BCD+CDF=90,再由CDAB 可得FDB+CDF=90,即可得出结论;(2)分当DF=DG时, 当DF=FG时,当FG=DG时,三种情况讨论,即可得出结论;(3) 由四边形PDEF是O圆内接四边形,可得PAD=EDF,连结PG,得出ADPDFE,再得到CDBPFG,列比例

21、式即可得出结论【详解】证明:(1)DE是直径CFD=90BCD+CDF=90CDABFDB+CDF=90BCD=FDB(2)(i)当DF=DG时,如图:CAB=45,CDAB,AC=3AD=CD=3AB=7BD=7-3=4BC=32+42=5DF=345=125DG=125(ii)如图:当DF=FG时,过F作FHBD交BD于点H, DFHCBDDHCD=DFCBDH=DF35=12535=3625DG=2DH=7225(iii)如图:当FG=DG时,1=21+3=2+4=903=4FG=GB=DGDG=12BD=2(3)如图:四边形PDEF是O圆内接四边形APD=DEFAPD+PAD=DEF+

22、EDF=90PAD=EDF连结PGPAD=EDFADP=DFE=90ADPDFEAPDE=ADDF=3512=54PDG=90PG是直径PFG=90FPG=FDG=BCDCDBPFGFGFG=CBDB=54DEFG=CBDB=54APFG=APDEDEFG=5454=2516.【点睛】本题是圆的综合题,考查了等腰三角形的性质和判定、三角形相似的性质和判定、圆的性质,直角三角形的性质,正确的添加辅助线是解决问题的关键.5、(1)见解析;(2)见解析【解析】【分析】(1)根据相似比为1:2可得DE=25,DF=25,EF=4,据此可得;(2)分别作DE、DF的中垂线,两直线的交点即为所求点P【详解】解:(1)如图,格点DEF即为所作;(2)如图,点P即为DEF的外接圆的圆心【点睛】本题主要考查三角形的外心和相似图形,熟练掌握三角形的外心到三顶点的距离相等及相似三角形的性质是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁