2022年浙教版初中数学七年级下册第四章因式分解专题攻克试题(无超纲).docx

上传人:知****量 文档编号:28160576 上传时间:2022-07-26 格式:DOCX 页数:18 大小:223.93KB
返回 下载 相关 举报
2022年浙教版初中数学七年级下册第四章因式分解专题攻克试题(无超纲).docx_第1页
第1页 / 共18页
2022年浙教版初中数学七年级下册第四章因式分解专题攻克试题(无超纲).docx_第2页
第2页 / 共18页
点击查看更多>>
资源描述

《2022年浙教版初中数学七年级下册第四章因式分解专题攻克试题(无超纲).docx》由会员分享,可在线阅读,更多相关《2022年浙教版初中数学七年级下册第四章因式分解专题攻克试题(无超纲).docx(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、初中数学七年级下册第四章因式分解专题攻克(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下面从左到右的变形中,因式分解正确的是()A.2x24xy2x(x+2y)B.x2+9(x+3)2C.x22x1(x1)2D.(x+2)(x2)x242、已知,则 的值是( )A.B.C.45D.723、下列各式能用平方差公式分解因式的是( )A.B.C.D.4、下列式子的变形是因式分解的是( )A.B.C.D.5、下列各式从左到右的变形中,属于因式分解的是( )A.6x9y33(2x3y)B.x21(x

2、1)2C.(xy)2x22xyy2D.2x222(x1)(x1)6、下列多项式:;.能用公式法分解因式的是( )A.B.C.D.7、多项式的因式为( )A.B.C.D.以上都是8、下列各式中从左到右的变形,是因式分解的是( )A.B.C.D.9、如果多项式x25x+c可以用十字相乘法因式分解,那么下列c的取值正确的是()A.2B.3C.4D.510、对于,从左到右的变形,表述正确的是( )A.都是因式分解B.都是乘法运算C.是因式分解,是乘法运算D.是乘法运算,是因式分解11、已知,则代数式的值为( )A.B.1C.D.212、把多项式x2+mx+35进行因式分解为(x5)(x+7),则m的值

3、是()A.2B.2C.12D.1213、下列各式中,正确的因式分解是( )A.B.C.D.14、多项式的公因式是()A.x2y3B.x4y5C.4x4y5D.4x2y315、下列多项式能用公式法分解因式的是()A.m2+4mnB.m2+n2C.a2+ab+b2D.a24ab+4b2二、填空题(10小题,每小题4分,共计40分)1、dx42x3+x210x4,则当x22x40时,d_2、若,且,则_3、已知ab5,ab2,则a2b+ab2_4、若实数a、b满足:a+b6,ab10,则2a22b2_5、因式分解:_6、因式分解:m2+2m_7、因式分解:_8、若,则多项式的值为_9、因式分解:=_

4、10、如果(a+ )2a2+6ab+9b2,那么括号内可以填入的代数式是 _(只需填写一个)三、解答题(3小题,每小题5分,共计15分)1、因式分解:(1);(2)2、分解因式:(1)x(x2)3(2x);(2)3a26ab3b23、分解因式:-参考答案-一、单选题1、A【分析】根据因式分解是把一个多项式转化成几个整式乘积的形式,可得答案.【详解】解:A、把一个多项式转化成两个整式乘积的形式,故A正确;B、等式不成立,故B错误;C、等式不成立,故C错误;D、是整式的乘法,故D错误;故选:A.【点睛】本题考查了因式分解的意义,因式分解是把一个多项式转化成几个整式乘积的形式,注意因式分解与整式乘法

5、的区别.2、D【分析】直接利用完全平方公式:a22ab+b2(ab)2,得出a,b的值,进而得出答案.【详解】解:x22ax+b(x3)2x26x+9,2a6,b9,解得:a3,故b2a2923272.故选:D.【点睛】此题主要考查了公式法分解因式,正确记忆完全平方公式是解题关键.3、D【分析】根据平方差公式逐个判断即可.【详解】解:A.是m和n的平方和,不是m和n的平方差,不能用平方差公式分解因式,故本选项不符合题意;B.是2x和y的平方和,不是2x和y的平方差,不能用平方差公式分解因式,故本选项不符合题意;C.是2a和b的平方和的相反数,不能用平方差公式分解因式,故本选项不符合题意;D.,

6、能用平方差公式分解因式,故本选项符合题意;故选:D.【点睛】本题考查了平方差公式分解因式,能熟记公式a2-b2=(a+b)(a-b)是解此题的关键.4、D【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式,由此结合选项即可作出判断.【详解】解:A、右边不是整式积的形式,不是因式分解,故本选项错误;B、右边不是整式积的形式,不是因式分解,故本选项错误;C、右边不是整式积的形式,不是因式分解,故本选项错误;D、是因式分解,故本选项正确;故正确的选项为:D【点睛】本题的关键是理解因式分解的定义:把一个多项式化为几个最简整式的积的形式,这种变形叫做把这个多项式

7、因式分解,属于基础题.5、D【分析】根据分解因式就是把一个多项式化为几个整式的积的形式的定义判断,利用排除法求解.【详解】解:A、6x+9y+3=3(2x+3y+1),故此选项错误;B、x2-1=(x+1)(x-1),故此选项错误;C、(x+y)2=x2+2xy+y2,是整式乘法运算,不是因式分解,故此选项错误;D、2x2-2=2(x-1)(x+1),属于因式分解,故此选项正确.故选:D.【点睛】本题考查的是因式分解的意义,正确掌握因式分解的定义是解题关键.6、C【分析】根据公式法的特点即可分别求解.【详解】不能用公式法因式分解;,可以用公式法因式分解;不能用公式法因式分解;=,能用公式法因式

8、分解;=,能用公式法因式分解.能用公式法分解因式的是故选C.【点睛】此题主要考查因式分解,解题的关键是熟知乘方公式的特点.7、D【分析】将先提公因式因式分解,然后运用平方差公式因式分解即可.【详解】解:,、,均为的因式,故选:D.【点睛】本题考查了提公因式法因式分解以及运用平方差公式因式分解,熟练运用公式法因式分解是解本题的关键.8、B【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据定义即可进行判断.【详解】解:A.,单项式不能因式分解,故此选项不符合题意;B.,是因式分解,故此选项符合题意;C.,是整式计算,故此选项不符合题意;D.,等式的右

9、边不是几个整式的积的形式,不是因式分解,故此选项不符合题意;故选:B.【点睛】本题主要考查了因式分解的定义.解题的关键是掌握因式分解的定义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算.9、C【分析】根据十字相乘法进行因式分解的方法,对选项逐个判断即可.【详解】解:A、,不能用十字相乘法进行因式分解,不符合题意;B、,不能用十字相乘法进行因式分解,不符合题意;C、,能用十字相乘法进行因式分解,符合题意;D、,不能用十字相乘法进行因式分解,不符合题意;故选C【点睛】此题考查了十字相乘法进行因式分解,解题的关键是掌握十字相乘法进行因式分解.10、C【分析】根据因式分解和整式乘法的

10、有关概念,对式子进行判断即可.【详解】解:,从左向右的变形,将和的形式转化为乘积的形式,为因式分解;,从左向右的变形,由乘积的形式转化为和的形式,为乘法运算;故答案为C.【点睛】此题考查了因式分解和整式乘法的概念,熟练掌握有关概念是解题的关键.11、D【分析】由已知等式可得,将变形,再代入逐步计算.【详解】解:,=2故选D.【点睛】本题考查了代数式求值,因式分解的应用,解题的关键是掌握整体思想,将所求式子合理变形.12、B【分析】根据整式乘法法则进行计算(x5)(x+7)的结果,然后根据多项式相等进行对号入座.【详解】解:(x5)(x+7),故选:B.【点睛】此题主要考查了多项式的乘法法则以及

11、多项式相等的条件,即两个多项式相等,则它们同次项的系数相等.13、B【分析】直接利用公式法以及提取公因式法分解因式,进而判断得出答案.【详解】解:.,故此选项不合题意;.,故此选项符合题意;.,故此选项不合题意;.,故此选项不合题意;故选:.【点睛】本题考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.14、D【分析】根据公因式的意义,将原式写成含有公因式乘积的形式即可.【详解】解:因为,所以的公因式为,故选:D.【点睛】本题考查了公因式,解题的关键是理解公因式的意义是得出正确答案的前提,将各个项写成含有公因式积的形式.15、D【分析】利用平方差公式,以及完全平方公式判断即可.

12、【详解】解:A、原式m(m+4n),不符合题意;B、原式不能分解,不符合题意;C、原式不能分解,不符合题意;D、原式(a2b)2,符合题意.故选:D.【点睛】此题考查了因式分解运用公式法,熟练掌握平方差公式及完全平方公式是解本题的关键.二、填空题1、16【分析】先将x22x4=0化为x22x=4,再将d化为x2(x22x)+x22x8x4后整体代入计算可求解.【详解】解:x22x40,x22x4,dx42x3+x210x4x2(x22x)+x22x8x44x2+48x44(x22x)16.故答案为:16.【点睛】本题主要考查因式分解的应用,将d化x2(x22x)+x22x8x4是解题的关键.2

13、、5【分析】将m2-n2按平方差公式展开,再将m-n的值整体代入,即可求出m+n的值.【详解】解:,.故答案为:5.【点睛】本题主要考查平方差公式,解题的关键是熟知平方差公式的逆用.3、10【分析】先用提公因式法将a2b+ab2变形为ab(ab),然后代值计算即可得到答案.【详解】解:a2b+ab2ab(a+b)ab(ab).ab5,ab2,a2b+ab2ab(ab)5(2)10.故答案为:10.【点睛】本题主要考查了用提公因式法因式分解,解题的关键在于能够熟练掌握因式分解的方法.4、120【分析】将所求式子变形,然后根据a+b6,ab10,即可求出所求式子的值.【详解】解:2a22b22(a

14、2b2)2(a+b)(ab),a+b6,ab10,原式2610120,故答案为:120.【点睛】本题考查因式分解的应用、平方差公式,解答本题的关键是明确题意,求出所求式子的值.5、【分析】将当作整体,对式子先进行配方,然后利用平方差公式求解即可.【详解】解:原式.故答案是:.【点睛】此题考查了因式分解,涉及了平方差公式,解题的关键是掌握因式分解的方法,并将当作整体,得到平方差的形式.6、【分析】根据提公因式法因式分解即可.【详解】.故答案为:.【点睛】本题考查了提公因式法因式分解,掌握提公因式法因式分解是解题的关键.7、【分析】先将原式变形为,再利用提公因式法分解即可.【详解】解:原式,故答案

15、为:.【点睛】本题考查了提公因式法分解因式,熟练掌握因式分解的方法是解决本题的关键.8、3【分析】将多项式多项式a2+b2+c2abbcac分解成(ab)2+(ac)2+(bc)2,再把a,b,c代入可求.【详解】解:;a2+b2+c2abbcac(2a2+2b2+2c22ab2ac2bc)(ab)2+(ac)2+(bc)2,a2+b2+c2abbcac(1+4+1)3;故答案为:3.【点睛】本题考查了因式分解的应用,关键是将多项式配成完全平方形式.9、【分析】根据完全平方公式分解即可.【详解】解: =,故答案为:.【点睛】本题考查了用公式法进行因式分解,解题关键是熟练运用完全平方公式进行因式

16、分解.10、3b【分析】先根据展开式三项进行公式化变形,利用因式分解公式得出因式分解结果,再反过来即可得解.【详解】解:a2+6ab+9b2= a2+2a3b+(3b)2=(a+3b)2,(a+3b )2a2+6ab+9b2,故答案为3b.【点睛】本题考查多项式的乘法公式,可反过来用因式分解公式来求解是解题关键.三、解答题1、(1);(2)【分析】(1)直接运用平方差公式进行分解即可;(2)先提取公因式,然后运用完全平方公式因式分解即可.【详解】解:(1)原式= ;(2)原式= =.【点睛】本题考查了公式法因式分解以及提公因式法因式分解,熟练掌握乘法公式的结构特点是解本题的关键.2、(1)(x2)(x3);(2)3(ab)2.【分析】(1)原式变形后,提取公因式即可得到结果;(2)原式提公因式后,最后利用完全平方公式分解即可.【详解】解:(1)x(x2)3(2x)x(x2)3(x2)(x2)(x3);(2)3a26ab3b23(a22abb2)3(ab)2.【点睛】本题考查因式分解,熟练掌握提公因式法和公式法是关键.3、【分析】先根据完全平方公式分组分解,再利用平方差公式计算即可.【详解】解:原式=【点睛】本题考查利用分组分解法分解因式,正确把握完全平方公式和平方差公式特点是解题的关键.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁