2022年北师大版九年级数学下册第三章-圆专项测试练习题.docx

上传人:知****量 文档编号:28160563 上传时间:2022-07-26 格式:DOCX 页数:28 大小:1,008.09KB
返回 下载 相关 举报
2022年北师大版九年级数学下册第三章-圆专项测试练习题.docx_第1页
第1页 / 共28页
2022年北师大版九年级数学下册第三章-圆专项测试练习题.docx_第2页
第2页 / 共28页
点击查看更多>>
资源描述

《2022年北师大版九年级数学下册第三章-圆专项测试练习题.docx》由会员分享,可在线阅读,更多相关《2022年北师大版九年级数学下册第三章-圆专项测试练习题.docx(28页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、北师大版九年级数学下册第三章 圆专项测试 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,四边形ABCD内接于O,连接BD,若,BDC50,则ADC的度数是()A125B130C135D1402、如图

2、,四边形ABCD内接于,若,则的度数为( )A50B100C130D1503、如图,在中,连接AC,CD,则AC与CD的关系是( )ABCD无法比较4、矩形ABCD中,AB8,BC4,点P在边AB上,且AP3,如果P是以点P为圆心,PD为半径的圆,那么下列判断正确的是()A点B、C均在P内B点B在P上、点C在P内C点B、C均在P外D点B在P上、点C在P外5、如图,的半径为,AB是的弦,于D,交于点C,且,弦AB的长为( )ABCD6、已知O的半径为4,点P 在O外部,则OP需要满足的条件是( )AOP4B0OP2D0OP4,故选:A【点睛】此题考查了点与圆的位置关系,熟记点在圆内、圆上、圆外的

3、判断方法是解题的关键7、D【分析】连接OB,OC,过点O作OEBC于点E,由等腰直角三角形的性质可知OE=BE,由垂径定理可知BC=2BE,故可得出结论【详解】解:连接OB,OC,过点O作OEBC于点E,OB=OC,BOC=90,OBE=45, OE=BE,OE2+BE2=OB2,BC=2BE=,即正方形ABCD的边长是故选:D【点睛】本题考查的是圆周角定理、垂径定理及勾股定理,根据题意作出辅助线,构造出等腰直角三角形是解答此题的关键8、D【分析】如图,连接 由为直径,证明在以的中点为圆心,为直径的上运动,连接 交于点 则此时最小,再利用锐角的正弦与勾股定理分别求解,即可得到答案.【详解】解:

4、如图,连接 由为直径, 在以的中点为圆心,为直径的上运动,连接 交于点 则此时最小, , 故选D【点睛】本题考查的是勾股定理的应用,圆外一点与圆的最短距离的理解,锐角的正弦的应用,掌握“圆外一点与圆的最短距离求解线段的最小值”是解本题的关键.9、C【分析】根据题意,画出示意图,确定出点的运动路径,再根据弧长公式即可求解【详解】解:根据题意可得,RtABC的运动示意图,如下:RtABC中,A90,B30,AC1,由图形可得,点的运动路线为,先以为中心,顺时针旋转,到达点,经过的路径长为,再以为中心,顺时针旋转,到达点,经过的路径长为,顶点A所经过的路径的长为,故选:C【点睛】此题考查了旋转的性质

5、,圆弧弧长的求解,解题的关键是根据题意确定点的运动路线10、D【分析】圆锥的侧面积,确定的值,进而求出圆锥侧面积【详解】解:,故选D【点睛】本题考察了圆锥侧面积解题的关键与难点在于确定的值二、填空题1、【分析】如图,连接AD,PA,PD,OD首先证明PA=PB,再根据PD+PB=PD+PAAD,求出AD即可解决问题【详解】解:如图,连接AD,PA,PD,ODOCAB,OA=OB,PA=PB,COB=90,DOB=90=60,OD=OB,OBD是等边三角形,ABD=60AB是直径,ADB=90,AD=ABsinABD=2,PB+PD=PA+PDAD,PD+PB2,PD+PB的最小值为2,故答案为

6、:2【点睛】本题考查圆周角定理,垂径定理,圆心角,弧,弦之间的关系等知识,解题的关键是学会用转化的思想思考问题2、2或或0【分析】当P与x轴相切时,圆心P的纵坐标为1或-1,根据圆心P在抛物线上,所以当y为1时,可以求出点P的横坐标【详解】解:当y=1时,有1=-x2+1,x=0当y=-1时,有-1=-x2+1,x= 故答案是:2或或0【点睛】本题考查的是二次函数的综合题,利用圆与x轴相切得到点P的纵坐标,然后代入抛物线求出点P的横坐标3、六【分析】设这个正多边形的边数为n,根据题意可知OA=OB=AB,则OAB是等边三角形,得到AOB=60,则,由此即可得到答案【详解】解:设这个正多边形的边

7、数为n,正多边形的半径与边长相等,OA=OB=AB,OAB是等边三角形,AOB=60,正多边形的边数是六,故答案为:六【点睛】本题主要考查了正多边形和圆,等边三角形的性质与判定,熟知相关知识是解题的关键4、4【分析】由周长公式可得O半径为4,再由正多边形的中心角公式可得正六边形ABCDEF中心角为,即可知正六边形ABCDEF为6个边长为4的正三角形组成的,则可求得六边形ABCDEF边长【详解】O的周长为8O半径为4正六边形ABCDEF内接于O正六边形ABCDEF中心角为正六边形ABCDEF为6个边长为4的正三角形组成的正六边形ABCDEF边长为4.故答案为:4【点睛】本题考查了正多边形的中心角

8、公式,正n边形的每个中心角都等于,由中心角为得出正六边形ABCDEF为6个边长为4的正三角形组成的是解题的关键5、90【分析】先根据是的内接正六边形一边得,再根据圆周角性质得,再根据平行线的性质得,最后由三角形外角性质可得结论【详解】解:是的内接正六边形一边 故答案为90【点睛】本题主要考查了正多边形与圆,圆周角定理等知识,熟练掌握相关定理是解答本题的关键三、解答题1、(1)见解析;(2)【分析】(1)根据点O的坐标确定直角坐标系,根据旋转的性质确定点A1、B1,顺次连线即可得到OA1B1;(2)利用弧长公式计算即可【详解】解:(1)如图,OA1B1即为所求三角形;(2)旋转过程中点B走过的路

9、径的长=【点睛】此题考查了旋转作图,弧长的计算公式,正确掌握旋转的性质及弧长的计算公式是解题的关键2、(1)(-b,-b2);(2)直角三角形,见解析;94m3【分析】(1)y=x2+bx=(x+b)2-b2,即可求解;(2)求出抛物线的表达式为y=x2,联立y=x2和y=kx+2并整理得:x2-2kx-4=0,证明ADOOEB,即可求解;AOB的外心为M,则点M是AB的中点,MP是梯形BADG的中位线,则m=k2+2,进而求解【详解】解:(1)y=x2+bx=(x+b)2-b2,抛物线的顶点Q坐标为(-b,-b2);(2)抛物线与x轴只有一个公共点,=b2-40=0,解得b=0,抛物线的表达

10、式为y=x2,如下图,分别过点A、B作x轴的垂线,垂足分别为D、G,设经过点(0,2)的直线的表达式为y=kx+2,联立y=x2和y=kx+2并整理得:x2-2kx-4=0,则x1+x2=2k,x1x2=-4,y1=x12,y2=x22,则y1y2=x12x22=4=-x1x2,AD=y1,DO=-x1,BE=y2,OE=x2,ADO=BEO=90,ADOOEB,AOD=OBE,OBG+BOG=90,BOG+AOD=90,即AOBO,AOB为直角三角形;过点A作x轴的平行线交EB的延长线于点H,过点M作MN与y轴平行,交AH于N,AOB的外心为M,MNy轴BH,点M是AB的中点,MP是梯形AB

11、GD的中位线,MP=(AD+BG)=(y2+y1),则m=MP=(y1+y2)=(kx1+2+kx2+2)= k(x1+x2)+4=k2+2,令y=kx+2=0,解得x=-,即点K的坐标为(-,0),由题意得:2-4,解得-1k且k0,k2+23,即点M的纵坐标m的取值范围m3【点睛】本题主要考查了二次函数的解析式的求法和与几何图形结合的综合能力的培养要会利用数形结合的思想把代数和几何图形结合起来,利用点的坐标的意义表示线段的长度,从而求出线段之间的关系3、(1)证明见解析;(2)证明见解析;(3)【分析】(1)连接,由题意知,;可得,进而说明是的切线(2)连接,同弧所对圆周角相等,有,进而说

12、明(3)勾股定理知,有,知,;在中用勾股定理求出的长,求出的长,通过角度关系得出,故有,进而求出的值【详解】解:(1)证明:如图所示,连接,为半径是的内接三角形,且是直径在和中,有又即是半径是的切线(2)证明:如图连接为直径(3)在中在和中,设,在中,有,解得,【点睛】本题考查了切线、圆周角、三角形全等、等腰三角形、勾股定理等知识解题的关键与难点在于角度等量关系的转化4、(1)作图见解析;(2)【分析】(1)由于D点为O的切点,即可得到OC=OD,且ODAB,则可确定O点在A的角平分线上,所以应先画出A的角平分线,与BC的交点即为O点,再以O为圆心,OC为半径画出圆即可;(2)连接CD和OD,

13、根据切线长定理,以及圆的基本性质,求出DCB的度数,然后进一步求出COD的度数,并结合三角函数求出OC的长度,再运用弧长公式求解即可【详解】解:(1)如图所示,先作A的角平分线,交BC于O点,以O为圆心,OC为半径画出O即为所求;(2)如图所示,连接CD和OD,由题意,AD为O的切线,OCAC,且OC为半径,AC为O的切线,AC=AD,ACD=ADC,CD=BD,B=DCB,ADC=B+BCD,ACD=ADC=2DCB,ACB=90,ACD+DCB=90,即:3DCB=90,DCB=30,OC=OD,DCB=ODC=30,COD=180-230=120,DCB=B=30,在RtABC中,BAC

14、=60,AO平分BAC,CAO=DAO=30,在RtACO中,【点睛】本题考查复杂作图-作圆,以及圆的基本性质和切线长定理等,掌握圆的基本性质,切线的性质以及灵活运用三角函数求解是解题关键5、(1)见解析;(2)见解析;(3)【分析】(1)根据题意画出即可;关于y轴对称点的坐标纵坐标不变,横坐标互为相反数;(2)根据网格结构找出点A、B、C以点O为旋转中心顺时针旋转90后的对应点,然后顺次连接即可;(3)利用ABC旋转时BC线段扫过的面积扇形BOB2扇形COC2即可求出【详解】解:(1)如图(2)如图(3)线段扫过的而积为【点睛】本题考查了利用旋转变换作图,轴对称和扇形面积公式等知识,熟练掌握网格结构准确找出对应点的位置是解题的关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁