《2022年浙教版初中数学七年级下册第四章因式分解专项攻克练习题(名师精选).docx》由会员分享,可在线阅读,更多相关《2022年浙教版初中数学七年级下册第四章因式分解专项攻克练习题(名师精选).docx(22页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、章节同步练习2022年浙教版初中数学 七年级下册知识点习题定向攻克含答案及详细解析第四章 因式分解浙教版初中数学七年级下册第四章因式分解专项攻克(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下列等式从左到右的变形中,属于因式分解的是()A.B.C.D.2、已知cab0,若M|a(ac)|,N|b(ac)|,则M与N的大小关系是()A.MNB.MNC.MND.不能确定3、对于,从左到右的变形,表述正确的是( )A.都是因式分解B.都是乘法运算C.是因式分解,是乘法运算D.是乘法运算,是因式分
2、解4、下列各式由左边到右边的变形,是因式分解的是( )A.B.C.D.5、下列各式由左到右的变形中,属于因式分解的是()A.a2abac=a(a+b+c )B.x2+x+1=(x+1)2xC.(x+2)(x1)=x2+x2D.a2+b2=(a+b)22ab6、下列各式从左到右的变形属于因式分解的是( )A.B.C.D.7、下列各式从左到右的变形中,为因式分解的是()A.x(ab)axbxB.x21+y2(x1)(x+1)+y2C.ax+bx+cx(a+b)+cD.y21(y+1)(y1)8、下列分解因式的变形中,正确的是( )A.xy(xy)x(yx)x(yx)(y1)B.6(ab)22(ab
3、)(2ab)(3ab1)C.3(nm)22(mn)(nm)(3n3m2)D.3a(ab)2(ab)(ab)2(2ab)9、下列各式从左到右的变形中,是因式分解的为( ).A.B.C.D.10、已知的值为5,那么代数式的值是( )A.2030B.2020C.2010D.200011、小南是一位密码编译爱好者,在他的密码手册中有这样一条信息:x1,ab,3,x2+1,a,x+1分别对应下列六个字:化,爱,我,数,学,新,现将3a(x21)3b(x21)因式分解,结果呈现的密码信息可能是()A.我爱学B.爱新化C.我爱新化D.新化数学12、下列各式中,不能用完全平方公式分解因式的是()A.x2+2x
4、+1B.16x2+1C.a2+4ab+4b2D.13、下列各式从左到右的变形,因式分解正确的是()A.x2+4(x+2)2B.x210x+16(x4)2C.x3xx(x21)D.2xy+6y22y(x+3y)14、下列各式中,不能用完全平方公式分解的个数为( );.A.1个B.2个C.3个D.4个15、若x2+mx+n分解因式的结果是(x2)(x+1),则m+n的值为()A.3B.3C.1D.1二、填空题(10小题,每小题4分,共计40分)1、若,则代数式的值等于_2、已知ab5,ab2,则a2b+ab2_3、利用平方差公式计算的结果为_4、如果,那么的值为_5、因式分解:m2+2m_6、因式
5、分解:_7、dx42x3+x210x4,则当x22x40时,d_8、分解因式:_;9、6x3y23x2y3分解因式时,应提取的公因式是_10、如果两个多项式有公因式,则称这两个多项式为关联多项式,若x225与(xb)2为关联多项式,则b_;若(x1)(x2)与A为关联多项式,且A为一次多项式,当Ax26x2不含常数项时,则A为_三、解答题(3小题,每小题5分,共计15分)1、因式分解(1)m2n9n;(2)x22x82、阅读下列材料:对于某些二次三项式可以采用“配方法”来分解因式,例如:把x2+6x16分解因式,我们可以这样进行:x2+6x-16=x2+2x3+32-32-16(加上32,再减
6、去32)=(x+3)2-52(运用完全平方公式)=(x+3+5)(x+3-5) (运用平方差公式)=(x+8)(x-2)(化简)运用此方法解决下列问题:(1)x210x+(_)(x_)2;(2)把x28x+12分解因式(3)已知:a2+b24a+6b+130,求多项式a26ab+9b2的值3、(1)计算:(2a2c)2 (3ab2) (2)分解因式:3a2b12ab+12b-参考答案-一、单选题1、A【分析】根据因式分解定义,把一个多项式化为几个整式的积的形式为因式分解,利用因式分解定义对选项进行一一判断即可.【详解】解:A. 是因式分解,故选项A正确; B. 是多项式乘法,故选项B不正确;C
7、. 不是因式分解,故选项C不正确; D. 是单项式乘的逆运算,不是因式分解,故选项D不正确.故选择A.【点睛】本题考查多项式的因式分解,掌握多项式的因式分解定义与特征是解题关键.2、C【分析】方法一:根据整式的乘法与绝对值化简,得到M-N=(ac)(ba)0,故可求解;方法二:根据题意可设c=-3,a=-2,b=-1,再求出M,N,故可比较求解.【详解】方法一:cab0,a-c0,M|a(ac)|=- a(ac)N|b(ac)|=- b(ac)M-N=- a(ac)- b(ac)= - a(ac)+ b(ac)=(ac)(ba)b-a0,(ac)(ba)0MN方法二: cab0,可设c=-3,
8、a=-2,b=-1,M|-2(-2+3)|=2,N|-1(-2+3)|=1MN故选C.【点睛】此题主要考查有理数的大小比较与因式分解得应用,解题的关键求出M-N=(ac)(ba)0,再进行判断.3、D【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据因式分解的定义判断即可.【详解】解:,属于整式乘法,不属于因式分解;,等式从左到右的变形属于因式分解;故选:D.【点睛】本题考查了整式的乘法和因式分解的定义,注意:把一个多项式化成几个整式的积的形式,叫因式分解.4、D【分析】根据因式分解是把一个多项式转化成几个整式积的形式,可得答案.【详解】解:A、
9、是整式的乘法,故不符合;B、没把一个多项式转化成几个整式积的形式,故不符合;C、没把一个多项式转化成几个整式积的形式,故不符合;D、把一个多项式转化成几个整式积的形式,故符合;故选:D.【点睛】本题考查因式分解的定义;掌握因式分解的定义和因式分解的等式的基本形式是解题的关键.5、A【分析】根据因式分解是把一个多项式转化成几个整式的积的形式,可得答案;【详解】解:A、把一个多项式转化成了几个整式的积,故A符合题意;、没把一个多项式转化成几个整式积,故不符合题意;、是整式的乘法,故C不符合题意;、没把一个多项式转化成几个整式积,故不符合题意;故选:A.【点睛】本题考查了因式分解的意义,解题的关键是
10、掌握因式分解是把一个多项式转化成几个整式积.6、B【分析】根据因式分解的意义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,可得答案.【详解】解:A、,属于整式乘法;B、,属于因式分解;C、,没把一个多项式转化成几个整式积的形式,不属于因式分解;D、,等式左边不是多项式,不属于因式分解;故选:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.7、D【分析】根据因式分解的定义解答即可.【详解】解:A、x(ab)axbx,是整式乘法,故此选项不符合题意;B、x21+y2(x1)(x+1)+y
11、2,不是因式分解,故此选项不符合题意;C、ax+bx+cx(a+b)+c,不是因式分解,故此选项不符合题意;D、y21(y+1)(y1),是因式分解,故此选项符合题意.故选D.【点睛】本题主要考查了因式分解的定义,把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.8、A【分析】按照提取公因式的方式分解因式,同时注意分解因式后的结果,一般而言每个因式中第一项的系数为正.【详解】解:A、xy(x-y)-x(y-x)=-x(y-x)(y+1),故本选项正确;B、6(a+b)2-2(a+b)=2(a+b)(3a+3b-1),故本选项错误;C、3(n-m)2+2(m-
12、n)=(n-m)(3n-3m-2),故本选项错误;D、3a(a+b)2-(a+b)=(a+b)(3a2+3ab-1),故本选项错误.故选:A.【点睛】本题考查提公因式法分解因式.准确确定公因式是求解的关键.9、B【分析】根据因式分解的定义把一个多项式化成几个整式的积的形式,叫因式分解.然后对各选项逐个判断即可.【详解】解:A、两因式之间用加号连结,是和的形式不是因式分解,故本选项不符合题意;B、是因式分解,故本选项符合题意;C、将积化为和差形式,是多项式乘法运算,不是因式分解,故本选项不符合题意;D、两因式之间用加号连结,是和的形式,不是因式分解,故本选项不符合题意;故选:B.【点睛】本题考查
13、了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键 .10、B【分析】将化简为,再将代入即可得.【详解】解:,把代入,原式=,故选B.【点睛】本题考查了代数式求值,解题的关键是把掌握提公因式.11、C【分析】把所给的式子运用提公因式和平方差公式进行因式分解,查看对应的字即可得出答案.【详解】解:,x1,ab,3,x2+1,a,x+1分别对应下列六个字:化,爱,我,数,学,新,结果呈现的密码信息可能是:我爱新化,故选:C.【点睛】本题考查因式分解,解题的关键是熟练掌握提公因式法和套用平方差公式.12、B【分析】根据完全平方公式的结构特征逐项进行判断即可.【详解】解:A.x2+2x+1(x
14、+1)2,因此选项A不符合题意;B.16x2+1在实数范围内不能进行因式分解,因此选项B符合题意;C.a2+4ab+4b2(a+2b)2,因此选项C不符合题意;D.x2x+(x)2,因此选项D不符合题意;故选:B.【点睛】此题考查了用完全平方公式进行因式分解,熟练掌握完全平方公式是解题的关键.13、D【分析】根据因式分解的方法解答即可.【详解】解:A、x2+4(x+2)2,因式分解错误,故此选项不符合题意;B、x2-10x+16(x-4)2,因式分解错误,故此选项不符合题意;C、x3-x=x(x2-1)=x(x+1)(x-1),因式分解不彻底,故此选项不符合题意;D、2xy+6y2=2y(x+
15、3y),因式分解正确,故此选项符合题意;故选:D.【点睛】本题考查了因式分解的方法,明确因式分解的结果应是整式的积的形式.运用提公因式法分解因式时,在提取公因式后,不要漏掉另一个因式中商是1的项.14、C【分析】分别利用完全平方公式分解因式得出即可.【详解】解:x2-10x+25=(x-5)2,不符合题意;4a2+4a-1不能用完全平方公式分解;x2-2x-1不能用完全平方公式分解;m2+m=-(m2-m+)=-(m-)2,不符合题意;4x4x2+不能用完全平方公式分解.故选:C.【点睛】此题主要考查了完全平方公式的应用,熟练掌握完全平方公式的形式是解题关键.15、A【分析】先根据多项式乘以多
16、项式法则进行计算,再根据已知条件求出m、n的值,最后求出答案即可.【详解】解:(x2)(x+1)x2+x2x2x2x2,二次三项式x2+mx+n可分解为(x2)(x+1),m1,n2,m+n1+(2)3,故选:A.【点睛】本题考查了多项式乘以多项式法则和分解因式,能够理解分解因式和多项式乘多项式是互逆运算是解决本题的关键.二、填空题1、4【分析】直接利用已知代数式将原式得出x+y=2,再将原式变形把数据代入求出答案.【详解】解:x+y-2=0,x+y=2,则代数式x2+4y-y2=(x+y)(x-y)+4y=2(x-y)+4y=2(x+y)=4.故答案为:4.【点睛】此题主要考查了公式法的应用
17、,正确将原式变形是解题关键.2、10【分析】先用提公因式法将a2b+ab2变形为ab(ab),然后代值计算即可得到答案.【详解】解:a2b+ab2ab(a+b)ab(ab).ab5,ab2,a2b+ab2ab(ab)5(2)10.故答案为:10.【点睛】本题主要考查了用提公因式法因式分解,解题的关键在于能够熟练掌握因式分解的方法.3、1010【分析】把分子利用平方差公式分解因式,然后约分化简.【详解】解:原式,故答案为:1010.【点睛】本题考查了利用平方差公式进行因式分解,熟练掌握a2-b2=(+b) (a-b)是解答本题的关键.4、54【分析】先利用平方差公式分解因式,再代入求值,即可.【
18、详解】解:=293=54,故答案是:54.【点睛】本题主要考查代数式求值,掌握平方差公式,进行分解因式,是解题的关键.5、【分析】根据提公因式法因式分解即可.【详解】.故答案为:.【点睛】本题考查了提公因式法因式分解,掌握提公因式法因式分解是解题的关键.6、【分析】将y(1-m)变形为-y(m-1),再提取公因式即可.【详解】x(m-1)+ y(1-m)= x(m-1)-y(m-1),=(x-y)(m-1),故答案为:(x-y)(m-1).【点睛】本题考查了因式分解,熟练进行代数式的变形构造公因式是解题的关键.7、16【分析】先将x22x4=0化为x22x=4,再将d化为x2(x22x)+x2
19、2x8x4后整体代入计算可求解.【详解】解:x22x40,x22x4,dx42x3+x210x4x2(x22x)+x22x8x44x2+48x44(x22x)16.故答案为:16.【点睛】本题主要考查因式分解的应用,将d化x2(x22x)+x22x8x4是解题的关键.8、【分析】直接提取公因式即可得解.【详解】解:=.故答案为:.【点睛】此题主要考查了因式分解,熟练运用提公因式,找出公因式是解答此题的关键.9、3x2y2【分析】分别找出系数的最大公约数和相同字母的最低指数次幂,即可确定公因式.【详解】解:6x3y2-3x2y3=3x2y2(2x-y),因此6x3y2-3x2y3的公因式是3x2
20、y2.故答案为:3x2y2.【点睛】本题主要考查公因式的确定,找公因式的要点是:(1)公因式的系数是多项式各项系数的最大公约数;(2)字母取各项都含有的相同字母;(3)相同字母的指数取次数最低的.10、5 -2x-2或-x-2 【分析】先将x2-25因式分解,再根据关联多项式的定义分情况求出b;再分A=k(x+1)=kx+k或A=k(x+2)=kx+2k两种情况,根据不含常数项.【详解】解:x2-25=(x+5)(x-5),x2-25的公因式为x+5、x-5.若x2-25与(x+b)2为关联多形式,则x+b=x+5或x+b=x-5.当x+b=x+5时,b=5.当x+b=x-5时,b=-5.综上
21、:b=5.(x+1)(x+2)与A为关联多项式,且A为一次多项式,A=k(x+1)=kx+k或A=k(x+2)=kx+2k,k为整数.当A=k(x+1)=kx+k(k为整数)时,若A+x2-6x+2不含常数项,则k+2=0,即k=-2.A=-2(x+1)=-2x-2.当A=k(x+2)=kx+2k(k为整数)时,若A+x2-6x+2不含常数项,则2k+2=0,即k=-1.A=-x-2.综上,A=-2x-2或A=-x-2.故答案为:5,-2x-2或-x-2.【点睛】本题主要考查多项式、公因式,熟练掌握多项式、公因式的意义是解决本题的关键.三、解答题1、(1)n(m+3)(m-3);(2)(x-4
22、)(x+2)【分析】(1)先提公因式n,再利用平方差公式进行因式分解即可;(2)利用十字相乘法进行因式分解即可.【详解】解:(1)m2n-9n=n(m2-9)=n(m+3)(m-3);(2)x2-2x-8=(x-4)(x+2).【点睛】本题考查提公因式法、公式法、十字相乘法分解因式,掌握平方差公式的结构特征以及十字相乘法适用二次三项式的特点是正确应用的前提.2、(1)25;5(2)(x-2)(x6);(3)121【分析】(1)利用配方法计算;(2)利用配方法把原式变形,根据平方差公式进行因式分解;(3)利用配方法把原式变形,求出a,b,代入即可【详解】解:(1)x210x+(25)(x5)2;
23、故答案为:25;5(2)原式x28x+1616+12(x4)24(x4+2)(x42)(x-2)(x6);(3)a2+b24a+6b+130a24a+4+b2+6b+90(a2)2+(b+3)2=0,a=2,b=-3;【点睛】本题考查的是配方法的应用,掌握完全平方公式、偶次方的非负性是解题的关键.3、(1)12a5b2c2;(2)3b(a2)2【分析】(1)根据积的乘方法则和单项式乘单项式的运算法则计算即可;(2)先运用提公因式法,再利用完全平方公式分解因式即可.【详解】解:(1)原式;(2)原式.【点睛】此题主要考查了整式乘法的运算和分解因式,解决此题的关键是熟练掌握积的乘方法则、单项式乘单项式的运算法则去括号,及熟练运用分解因式的方法.