《2022年精品解析京改版九年级数学下册第二十五章-概率的求法与应用专题测评练习题.docx》由会员分享,可在线阅读,更多相关《2022年精品解析京改版九年级数学下册第二十五章-概率的求法与应用专题测评练习题.docx(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、九年级数学下册第二十五章 概率的求法与应用专题测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、小明的妈妈让他在无法看到袋子里糖果的情形下从中任抽一颗袋子里有三种颜色的糖果,它们的大小、形状、质量等都相
2、同如果袋中所有糖果数量统计如图所示,那么小明抽到红色糖果的可能性为( )ABCD2、一个袋子中放有4个红球和6个白球,这些球除颜色外均相同,随机从袋子中摸出一球,摸到红球的概率是( )ABCD3、同时抛掷两枚质地均匀的硬币,两枚硬币全部正面向上的概率是( )ABCD4、在“3,2,1,0,1,2,3”七个数中,任取一个数等于a,恰好使方程(a21)x2+(a+2)x+a30是一元二次方程的概率是()ABCD15、把形状完全相同风景不同的两张图片全部从中剪断,再把四张形状相同的小图片混合在一起,从四张图片中随机摸取两张,则这两张小图片恰好合成一张完整图片的概率为( )ABCD6、某区为了解初中生
3、体质健康水平,在全区进行初中生体质健康的随机抽测,结果如下表:根据抽测结果,下列对该区初中生体质健康合格的概率的估计,最合理的是( ) 累计抽测的学生数n1002003004005006007008009001000体质健康合格的学生数与n的比值0.850.90.930. 910.890.90.910.910.920.92A0.92B0.905C0.03D0.97、一个口袋中有红色、黄色、蓝色玻璃球共200个,小明通过大量摸球试验后,发现摸到红球的频率为35%,则估计红球的个数约为()A35个B60个C70个D130个8、一只不透明袋子中装有1个绿球和若干个黑球,这些球除颜色外都相同,某课外学
4、习小组做摸球试验,将口袋中的球拌匀,从中随机摸出个球,记下颜色后再放回口袋中不断重复这一过程,获得数据如下:摸球的次数200300400100016002000摸到黑球的频数14218626066810641333摸到黑球的频率0.71000.62000.65000.66800.66500.6665该学习小组发现,摸到黑球的频率在一个常数附近摆动,由此估计这个口袋中黑球有()个A4B3C2D19、从分别标有号数1到10的10张除标号外完全一样的卡片中,随意抽取一张,其号数为3的倍数的概率是( )ABCD10、某学习小组做“用频率估计概率”的试验时,统计了某一结果出现的频率,绘制了如图所示折线统
5、计图,则符合这一结果的试验最有可能的是()A不透明袋中装有大小和质地都相同的1个红球和2个黄球,从中随机取一个,取到红球B任意写一个整数,它能被2整除C掷一枚正六面体的骰子,出现1点朝上D先后两次掷一枚质地均匀的硬币,两次都出现反面第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、在一个不透明的袋子中,装有若干个除颜色外都相同的小球,其中有8个红球和n个黑球,从袋中任意摸出一个球,若摸出黑球的概率是,则n_2、如图,小颖在围棋盘上两个格子的格点上任意摆放黑、白两个棋子,且两个棋子不在同一条网格线上,其中,恰好摆放成如图所示位置的概率是_3、任意翻一下2021年日历,翻出1
6、月6日的概率为_;翻出4月31日的概率为_4、某校决定从两名男生和一名女生中选出两名同学担任校艺术节文艺演出专场的主持人,则选出的恰好是一男一女的概率是 _5、社团课上,同学们进行了“摸球游戏”:在一个不透明的盒子里,装有20个除颜色不同外其余均相同的黑、白两种球,将盒子里面的球搅匀后,从中随机摸出一个球记下颜色,再把它放回盒子中,不断重复上述过程整理数据后,制作了“摸出黑球的频率”与“摸球的总次数”的关系图象,如图所示,经分析可以推断“摸出黑球”的概率约为_三、解答题(5小题,每小题10分,共计50分)1、从两副完全相同的扑克中,抽出两张黑桃5和两张梅花8,现将这四张扑克牌洗匀后,背面向上放
7、在桌子上,(1)问从中随机抽取一张扑克牌是梅花8的概率是多少?(2)利用树状图或列表法表示从中随机抽取两张扑克牌成为一对的概率2、在33的方格纸中,点A、B、C、D、E、F分别位于如图所示的小正方形的顶点上(1)如果只能沿着图中实线向右或向下走,则从点A走到点E有 条不同的路线(2)先从A、B、C中任意取一点,再从D、E、F中任选两个点,用这三个点组成三角形,用树状图或列表的方法求所画三角形是直角三角形的概率3、放假期间,小明和小华准备到白马湖度假区(记为A)、金湖水上森林公园(记为B)、盱眙铁山寺国家森林公园(记为C)的其中一个景点去游览,他们各自在这三个景点中任选一个,每个景点都被选中的可
8、能性相同(1)小明选择去白马湖度假区的概率是 (2)用树状图或列表的方法求小明和小华分别去不同景点游览的概率4、一只不透明的袋子中装有三个质地、大小都相同的小球,球面上分别标有数字-1、2、3,搅匀后先从中任意摸出一个小球(不放回),记下数字作为点M的横坐标,再从余下的两个小球中任意摸出一个小球,记下数字作为点M的纵坐标(1)用树状图或列表等方法,列出所有可能出现的结果;(2)求事件A“点M落在第二象限”的概率P(A)5、一个不透明的口袋中有三个完全相同的小球,把它们分别标号为1,2,3甲从口袋中随机摸取一个小球,记下标号m,然后放回,再由乙从口袋中随机摸取一个小球,记下标号n,组成一个数对(
9、m,n)(1)用列表法或画树状图法,写出(m,n)所有可能出现的结果;(2)甲、乙两人玩游戏,规则如下:按上述要求,两人各摸取一个小球,小球上标号之和为奇数则甲赢,小球上标号之和为偶数则乙赢你认为这个游戏规则公平吗?请说明理由-参考答案-一、单选题1、D【分析】先利用条形统计图得到绿色糖果的个数为2,红色糖果的个数为5,黄色糖果的个数为8,然后根据概率公式求解【详解】解:根据统计图得绿色糖果的个数为2,红色糖果的个数为5,黄色糖果的个数为8,所以小明抽到红色糖果的概率故选:D【点睛】本题考查了概率公式:随机事件A的概率P(A)事件A可能出现的结果数除以所有可能出现的结果数也考查了条形统计图2、
10、C【分析】根据随机事件概率大小的求法,找准两点:符合条件的情况数目;全部情况的总数二者的比值就是其发生的概率的大小【详解】解:袋子里装有10个球,4个红球,6个白球,摸出红球的概率:故选:C【点睛】本题主要考查了概率的求法与运用,一般方法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=3、A【分析】首先利用列举法可得所有等可能的结果有:正正,正反,反正,反反,然后利用概率公式求解即可求得答案【详解】解:抛掷两枚质地均匀的硬币,两枚硬币落地后的所有等可能的结果有:正正,正反,反正,反反,正面都朝上的概率是:.故选A【点睛】本题考查了列举法求概
11、率的知识此题比较简单,注意在利用列举法求解时,要做到不重不漏,注意概率=所求情况数与总情况数之比4、C【分析】根据一元二次方程的定义求出方程(a21)x2+(a+2)x+a30是一元二次方程时a的取值范围,进而再根据概率的意义进行计算即可【详解】解:当a210,即a1时,方程(a21)x2+(a+2)x+a30是一元二次方程,在“3,2,1,0,1,2,3”七个数中有5个数使方程(a21)x2+(a+2)x+a30是一元二次方程,恰好使方程(a21)x2+(a+2)x+a30是一元二次方程的概率是故选:C【点睛】本题考查了一元二次方程的定义和概率的意义,熟练掌握各定义是解决本题的关键5、B【分
12、析】设四张小图片分别用A,a,B,b表示,画树状图,然后根据树状图找出满足条件的结果即可得出概率【详解】解:设四张小图片分别用A,a,B,b表示,画树状图得:由图可得,共有12种等可能的结果,其中摸取两张小图片恰好合成一张完整图片的结果共有4种,摸取两张小图片恰好合成一张完整图片的概率为:,故选:B【点睛】题目主要考查利用树状图或列表法求概率问题,理解题意,熟练运用树状图或列表法是解题关键6、A【分析】根据频数估计概率可直接进行求解【详解】解:由表格可知:经过大量重复试验,体质健康合格的学生数与抽测的学生数n的比值稳定在0.92附近,所以该区初中生体质健康合格的概率为0.92;故选A【点睛】本
13、题主要考查用频数估计概率,熟练掌握利用频数估计概率是解题的关键7、C【分析】根据大量重复试验后频率的稳定值即为概率,进行求解即可【详解】解:一个口袋中有红色、黄色、蓝色玻璃球共200个,小明通过大量摸球试验后,发现摸到红球的频率为35%,红球的个数=20035%=70个,故选C【点睛】本题主要考查了用频率估计概率,解题的关键在于能够熟练掌握大量重复试验下,频率的稳定值即为概率8、C【分析】该学习小组发现,摸到黑球的频率在一个常数附近摆动,这个常数约为0.667,据此知摸出黑球的概率为0.667,继而得摸出绿球的概率为0.333,求出袋子中球的总个数即可得出答案【详解】解:该学习小组发现,摸到黑
14、球的频率在一个常数附近摆动,这个常数约为0.667,估计摸出黑球的概率为0.667,则摸出绿球的概率为,袋子中球的总个数为,由此估出黑球个数为,故选:C【点睛】本题考查了利用频率估计概率,解题的关键是掌握大量重复实验时,事件发生的频率在某个固定位置左右摆动,并且摆动的幅度越来越小,根据这个频率稳定性定理,可以用频率的集中趋势来估计概率,这个固定的近似值就是这个事件的概率9、C【分析】用3的倍数的个数除以数的总数即为所求的概率【详解】解:1到10的数字中是3的倍数的有3,6,9共3个,卡片上的数字是3的倍数的概率是故选:C【点睛】本题考查概率的求法用到的知识点为:概率所求情况数与总情况数之比10
15、、A【分析】根据频率图象可知某实验的频率约为0.33,依次求出每个事件的概率进行比较即可得到答案【详解】解:A、不透明袋中装有大小和质地都相同的1个红球和2个黄球,从中随机取一个,取到红球的概率0.33,符合题意; B、任意写一个整数,它能2被整除的概率为,不符合题意; C、掷一个质地均匀的正六面体骰子,出现1点朝上的概率为0.17,不符合题意;D、先后两次掷一枚质地均匀的硬币,两次都出现反面的概率是,不符合题意; 故选:A【点睛】此题考查了利用频率估计概率,大量反复试验下频率稳定值即概率用到的知识点为:频率所求情况数与总情况数之比二、填空题1、【分析】根据概率公式计算即可【详解】共有个球,其
16、中黑色球个从中任意摸出一球,摸出黑色球的概率是解得经检验,是原方程的解故答案为:【点睛】本题考查了简单概率公式的计算,熟悉概率公式是解题的关键概率=所求情况数与总情况数之比2、【分析】由题意根据概率的求法,找准两点:全部情况的总数;符合条件的情况数目;二者的比值就是其发生的概率【详解】解:如图假设围棋盘上两个格子的格点分别为,白球在网格上有6种摆放方法,两棋子不在同一条格线上的摆放记为(白,黑)共有12种摆放方法,其中,恰好摆放成如图所示位置的情况只有1种,故概率为:.故答案为:【点睛】本题考查概率的求法.注意掌握如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事
17、件A的概率P(A)=3、 0 【分析】根据概率的公式,即可求解【详解】解:2021年共有365天,翻出1月6日的概率为 ,2021年4月没有31日,翻出4月31日的概率为0故答案为:;0【点睛】本题主要考查了计算概率,熟练掌握概率的公式是解题的关键4、【分析】列举出所有等可能的情况数,让选出的恰为一男一女的情况数除以总情况数即为所求的概率【详解】解:根据题意画图如下:共有6种等可能的情况数,其中一男一女的情况有4种,则选出的恰为一男一女的概率是46=故答案是:【点睛】此题考查了列表法与树状图法求概率,解答此题的关键是用树形法列举出所有可能的情况,再根据概率公式解答5、【分析】根据“摸出黑球的频
18、率”与“摸球的总次数”的关系图象,即可得出“摸出黑球”的概率【详解】解:由图可知,摸出黑球的概率约为0.2,故答案为:0.2【点睛】本题主要考查用频率估计概率,需要注意的是试验次数要足够大,次数太少时不能估计概率三、解答题1、(1);(2)【分析】(1)根据概率公式计算即可;(2)根据列表法求概率即可【详解】(1)根据题意共有4张牌,两张梅花8,从中随机抽取一张扑克牌是梅花8的概率是;(2)列表如下,55885558585555858585858888585888共有12种等可能结果,其中凑成一对的有4种,随机抽取两张扑克牌成为一对的概率为【点睛】本题考查了概率公式求求概率和列表法求概率,掌握
19、求概率的方法是解题的关键2、(1)6;(2)【分析】(1)根据题意只能沿着图中实线向右或向下走,枚举所有可能即可求解;(2)根据网格的特点判断直角三角形,根据列表法求得概率【详解】(1)如图,从点出发,只能向右或向下,先向右的路线为:,,先向下的路线为:,共6条路线故答案为:6(2)列表如下,ABCD、EADEBDECDED、FADFBDFCDFE、FAEFBEFCEF根据列表可知共有9种等可能情况,只有CDE,CDF, CEF是直角三角形则所画三角形是直角三角形的概率为【点睛】本题考查了枚举法,列表法求概率,掌握列举法和列表法求概率是解题的关键3、(1);(2)【分析】(1)直接利用概率公式
20、求解可得(2)先画出树状图,根据树状图可以求得所有等可能的结果以及他们分别去不同景点游览的情况,再利用概率公式即可求得答案【详解】解:(1)小明选择去白云山游览的概率是;故答案为:;(2)画树状图得:共有9种等可能的结果,小明和小华分别去不同景点游览的情况有6种结果,小明和小华分别去不同景点游览的概率为【点睛】此题考查随机事件的概率计算,涉及到树状图法表示概率的方法4、(1)树状图见解析,(1,2)、(1,3)、(2,1)、(2,3)、(3,1)、(3,2);(2)【分析】(1)根据题意画出树状图,并列出所有可能出现的结果;(2)根据(1)的树状图求事件A“点M落在第二象限”的概率P(A)【详
21、解】解:(1)可画树状图如下:由此可知点M的坐标有以下六种等可能性:(1,2)、(1,3)、(2,1)、(2,3)、(3,1)、(3,2) (2)上面六种等可能性中第二象限的点M为(1,2)、(1,3)两种,事件A“点M落在第二象限”的概率为P(A)=【点睛】本题考查了树状图法求概率,第二象限点的坐标特征,掌握树状图法求概率是解题的关键5、(1)见解析;(2)这个游戏不公平,理由见解析【分析】(1)根据题意画出树状图进行求解即可;(2)根据(1)所画树状图,先得到所有的等可能性的结果数,然后分别得到小球标号之和为奇数和偶数的结果数,最后分别求出甲乙两人赢的概率即可得到答案【详解】解:(1)列树状图如下所示:由树状图可知(m,n)所有可能出现的结果为:(1,1),(1,2),(1,3),(2,1),(2,2),(2,3),(3,1),(3,2),(3,3);(2)由(1)得一共有9种等可能性的结果数,其中小球上标号之和为奇数的结果数有(1,2),(2,1),(2,3),(3,2),4种等可能性的结果数,其中小球上标号之和为偶数的结果数有(1,1),(1,3),(2,2),(3,1),(3,3),5种等可能性的结果数,甲赢的概率为,乙赢的概率为,这个游戏不公平【点睛】本题主要考查了画树状图和游戏的公平性,解题的关键在于能够熟练掌握画树状图的方法