2022年最新浙教版初中数学七年级下册第四章因式分解专项攻克试卷.docx

上传人:知****量 文档编号:28159349 上传时间:2022-07-26 格式:DOCX 页数:20 大小:296.03KB
返回 下载 相关 举报
2022年最新浙教版初中数学七年级下册第四章因式分解专项攻克试卷.docx_第1页
第1页 / 共20页
2022年最新浙教版初中数学七年级下册第四章因式分解专项攻克试卷.docx_第2页
第2页 / 共20页
点击查看更多>>
资源描述

《2022年最新浙教版初中数学七年级下册第四章因式分解专项攻克试卷.docx》由会员分享,可在线阅读,更多相关《2022年最新浙教版初中数学七年级下册第四章因式分解专项攻克试卷.docx(20页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、章节同步练习2022年浙教版初中数学 七年级下册知识点习题定向攻克含答案及详细解析第四章 因式分解浙教版初中数学七年级下册第四章因式分解专项攻克(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(15小题,每小题3分,共计45分)1、下列分解因式正确的是()A.B.C.D.2、对于,从左到右的变形,表述正确的是( )A.都是因式分解B.都是乘法运算C.是因式分解,是乘法运算D.是乘法运算,是因式分解3、下列各式从左到右的变形,属于因式分解的是()A.ab+bc+bb(a+c)+bB.a29(a+3)(a3)C.(a1)2+(a1)a

2、2aD.a(a1)a2a4、下列各式从左到右的变形中,是因式分解的为( ).A.B.C.D.5、下列因式分解正确的是( )A.B.C.D.6、若多项式x2mx+n可因式分解为(x+3)(x4).其中m,n均为整数,则mn的值是( )A.13B.11C.9D.77、下列各式中与b2a2相等的是()A.(ba)2B.(a+b)(ab)C.(a+b)(a+b)D.(a+b)(ab)8、下列各式从左边到右边的变形中,属于因式分解的是( )A.B.C.D.9、下列各式从左到右的变形是因式分解为( )A.B.C.D.10、下列各式由左边到右边的变形,是因式分解的是()A.x2+xy4x(x+y)4B.C.

3、(x+2)(x2)x24D.x22x+1(x1)211、下列关于2300+(2)301的计算结果正确的是()A.2300+(2)301230023012300223002300B.2300+(2)3012300230121C.2300+(2)301(2)300+(2)301(2)601D.2300+(2)3012300+2301260112、下列各式中,不能用完全平方公式分解因式的是()A.x2+2x+1B.16x2+1C.a2+4ab+4b2D.13、把多项式x39x分解因式,正确的结果是( )A.x(x29)B.x(x3)(x3)C.x(x3)2D.x(3x)(3x)14、把多项式a39a

4、分解因式,结果正确的是()A.a(a29)B.(a+3)(a3)C.a(9a2)D.a(a+3)(a3)15、下列等式中,从左到右的变形是因式分解的是()A.2x(x1)2x22xB.4m2n2(4m+n)(4mn)C.x2+2xx(x2)D.x22x+3x(x2)+3二、填空题(10小题,每小题4分,共计40分)1、若关于的二次三项式可以用完全平方公式进行因式分解,则_2、若,则代数式的值等于_3、分解因式:_4、若多项式9x2+kxy+4y2能用完全平方公式进行因式分解,则k_5、若代数式x2a在有理数范围内可以因式分解,则整数a的值可以为_(写出一个即可)6、如果两个多项式有公因式,则称

5、这两个多项式为关联多项式,若x225与(xb)2为关联多项式,则b_;若(x1)(x2)与A为关联多项式,且A为一次多项式,当Ax26x2不含常数项时,则A为_7、多项式的公因式是_8、已知二次三项式x2+px+q因式分解的结果是(x3)(x5),则p+q=_9、已知,则的值等于_10、若,则_三、解答题(3小题,每小题5分,共计15分)1、分解因式:2ax416ax232a2、因式分解:(1)2a2b8ab2+8b3(2)a2(mn)+9(nm)(3)81x416(4)(m2+5)212(m2+5)+363、(1)计算:(2)因式分解:-参考答案-一、单选题1、D【分析】本题考查的是提公因式

6、法与公式法的综合运用,根据分解因式的定义,以及完全平方公式即可作出解答.【详解】A. m2+n2,不能因式分解; B.16m24n2=4(4m2n)(4m+2n),原因式分解错误; C. a33a2+a=a(a23a+1),原因式分解错误; D.4a24ab+b2=(2ab)2,原因式分解正确.故选:D.【点睛】此题考查了运用提公因式法和公式法进行因式分解,熟练掌握公式法因式分解是解本题的关键.2、C【分析】根据因式分解和整式乘法的有关概念,对式子进行判断即可.【详解】解:,从左向右的变形,将和的形式转化为乘积的形式,为因式分解;,从左向右的变形,由乘积的形式转化为和的形式,为乘法运算;故答案

7、为C.【点睛】此题考查了因式分解和整式乘法的概念,熟练掌握有关概念是解题的关键.3、B【分析】根据因式分解的定义逐项排查即可.【详解】解:根据因式分解的定义可知:A、C、D都不属于因式分解,只有B属于因式分解.故选B.【点睛】本题主要考查了因式分解的定义,把一个多项式化为几个最简整式的乘积的形式,这种变形叫做把这个因式分解.4、B【分析】根据因式分解的定义把一个多项式化成几个整式的积的形式,叫因式分解.然后对各选项逐个判断即可.【详解】解:A、两因式之间用加号连结,是和的形式不是因式分解,故本选项不符合题意;B、是因式分解,故本选项符合题意;C、将积化为和差形式,是多项式乘法运算,不是因式分解

8、,故本选项不符合题意;D、两因式之间用加号连结,是和的形式,不是因式分解,故本选项不符合题意;故选:B.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义的内容是解此题的关键 .5、D【分析】A.直接利用平方差公式分解因式得出答案;B.直接提取公因式a,进而分解因式即可;C.直接利用完全平方公式分解因式得出答案;D.首先提取公因式2,再利用完全平方公式分解因式得出答案.【详解】解:A.x2-9=(x-3)(x+3),故此选项不合题意;B.a3-a2+a=a(a2-a+1),故此选项不合题意;C.(x-1)2-2(x-1)+1=(x-2)2,故此选项不合题意;D.2x2-8xy+8y2=2(

9、x-2y)2,故此选项符合题意;故选:D.【点睛】此题主要考查了提取公因式法以及公式法分解因式,正确运用乘法公式是解题关键.6、A【分析】根据多项式与多项式的乘法法则化简(x+3)(x4),再与式x2mx+n比较求出m,n的值,代入mn计算即可.【详解】解:(x+3)(x4)=x2-4x+3x-12=x2-x-12,x2mx+n= x2-x-12,m=1,n=-12,mn=1+12=13.故选A.【点睛】本题考查了因式分解,以及多项式与多项式的乘法计算,熟练掌握因式分解与乘法运算是互为逆运算的关系是解答本题的关键.7、C【分析】根据平方差公式直接把b2a2分解即可.【详解】解:b2a2(ba)

10、(b+a),故选:C.【点睛】此题主要考查了公式法分解因式,关键是掌握平方差公式.平方差公式:a2-b2=(a+b)(a-b).8、B【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,据此解答即可.【详解】解:A、是整式乘法,不是因式分解,故此选项不符合题意;B、符合因式分解的定义,是因式分解,故此选项符合题意;C、右边不是整式积的形式,不是因式分解,故此选项不符合题意;D、,分解错误,故此选项不符合题意;故选:B.【点睛】本题考查了因式分解的知识,解答本题的关键是掌握因式分解的定义.9、D【分析】把一个多项式化成几个整式积的形式,叫因式分解,根据因式分解的定义判断

11、即可.【详解】A. ,属于整式的乘法运算,故本选项错误;B. ,属于整式的乘法运算,故本选项错误;C. 左边和右边不相等,故本选项错误;D. ,符合因式分解的定义,故本选项正确;故选:D【点睛】此题考查了因式分解的定义.解题的关键是掌握因式分解的定义:把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解.10、D【分析】根据因式分解的定义逐个判断即可.【详解】解:A.从等式左边到右边的变形不属于因式分解,故本选项不符合题意;B.等式的右边不是整式的积,即从等式左边到右边的变形不属于因式分解,故本选项不符合题意;C.从等式左边到右边的变形不属于因式分解,故本选项不符合题意;D.从

12、等式左边到右边的变形属于因式分解,故本选项符合题意;故选:D.【点睛】本题考查了因式分解的定义,能熟记因式分解的定义是解此题的关键,注意:把一个多项式化成几个整式的积的形式,叫因式分解.11、A【分析】直接利用积的乘方运算法则将原式变形,再利用提取公因式法分解因式计算得出答案.【详解】2300+(2)301230023012300223002300.故选:A.【点睛】此题主要考查了提取公因式法分解因式以及有理数的混合运算,正确将原式变形是解题关键.12、B【分析】根据完全平方公式的结构特征逐项进行判断即可.【详解】解:A.x2+2x+1(x+1)2,因此选项A不符合题意;B.16x2+1在实数

13、范围内不能进行因式分解,因此选项B符合题意;C.a2+4ab+4b2(a+2b)2,因此选项C不符合题意;D.x2x+(x)2,因此选项D不符合题意;故选:B.【点睛】此题考查了用完全平方公式进行因式分解,熟练掌握完全平方公式是解题的关键.13、B【分析】原式提取公因式,再利用平方差公式分解即可.【详解】解:x39xx(x29)x(x3)(x3).故选:B.【点睛】本题考查了提公因式和公式法分解因式,熟练掌握平方差公式是解题的关键.14、D【分析】先用提公因式法,再用平方差公式即可完成.【详解】a39aa(a29)a(a+3)(a3).故选:D.【点睛】本题考查了因式分解,用到了提公因式法和公

14、式法,因式分解一般是先考虑提公因式法,再考虑公式法,注意的是,因式分解要进行到再也不能分解为止.15、C【分析】把一个多项式化为几个整式的积的形式,这种变形叫做把这个多项式因式分解,也叫做分解因式.根据定义即可进行判断.【详解】解:A.2x(x1)2x22x,原变形是整式乘法,不是因式分解,故此选项不符合题意;B.4m2n2(2m+n)(2mn),故此选项不符合题意;C.x2+2xx(x2),把一个多项式化为几个整式的积的形式,原变形是因式分解,故此选项符合题意;D.x22x+3x(x2)+3,等式的右边不是几个整式的积的形式,不是因式分解,故此选项不符合题意;故选:C.【点睛】本题主要考查了

15、因式分解的定义.解题的关键是掌握因式分解的定义,要注意因式分解是整式的变形,并且因式分解与整式的乘法互为逆运算.二、填空题1、-3或5【分析】直接利用完全平方公式进而分解因式得出答案.【详解】解:x2-2(m-1)x+16能用完全平方公式进行因式分解,-2(m-1)=8,解得:m=-3或5.故答案为:-3或5.【点睛】此题主要考查了公式法分解因式,正确应用完全平方公式是解题关键.2、4【分析】直接利用已知代数式将原式得出x+y=2,再将原式变形把数据代入求出答案.【详解】解:x+y-2=0,x+y=2,则代数式x2+4y-y2=(x+y)(x-y)+4y=2(x-y)+4y=2(x+y)=4.

16、故答案为:4.【点睛】此题主要考查了公式法的应用,正确将原式变形是解题关键.3、【分析】先提取公因式,再根据平方差公式因式分解即可.【详解】解:原式,故答案为:.【点睛】本题考查了提公因式法和平方差公式,掌握是解题的关键.4、12.【分析】先根据两平方项确定出这两个数,再根据完全平方公式的乘积二倍项即可确定k的值.【详解】解:9x2+kxy+4y2(3x)2+kxy +(2y)2,kxy23x2y12xy,解得k12.故答案为:12.【点睛】本题主要考查了完全平方式,根据平方项确定出这两个数是解题的关键,也是难点,熟记完全平方公式对解题非常重要.5、1【分析】直接利用平方差公式分解因式得出答案

17、.【详解】解:当a1时,x2ax21(x+1)(x1),故a的值可以为1(答案不唯一).故答案为:1(答案不唯一).【点睛】此题主要考查了公式法分解因式,正确应用平方差公式是解题关键.6、5 -2x-2或-x-2 【分析】先将x2-25因式分解,再根据关联多项式的定义分情况求出b;再分A=k(x+1)=kx+k或A=k(x+2)=kx+2k两种情况,根据不含常数项.【详解】解:x2-25=(x+5)(x-5),x2-25的公因式为x+5、x-5.若x2-25与(x+b)2为关联多形式,则x+b=x+5或x+b=x-5.当x+b=x+5时,b=5.当x+b=x-5时,b=-5.综上:b=5.(x

18、+1)(x+2)与A为关联多项式,且A为一次多项式,A=k(x+1)=kx+k或A=k(x+2)=kx+2k,k为整数.当A=k(x+1)=kx+k(k为整数)时,若A+x2-6x+2不含常数项,则k+2=0,即k=-2.A=-2(x+1)=-2x-2.当A=k(x+2)=kx+2k(k为整数)时,若A+x2-6x+2不含常数项,则2k+2=0,即k=-1.A=-x-2.综上,A=-2x-2或A=-x-2.故答案为:5,-2x-2或-x-2.【点睛】本题主要考查多项式、公因式,熟练掌握多项式、公因式的意义是解决本题的关键.7、【分析】找出多项式中各单项式的公共部分即可.【详解】解:多项式的公因

19、式是:,故答案为:.【点睛】本题主要考查公因式的概念,找出多项式中各单项式的公共部分是解题的关键.8、7【分析】利用多项式乘以多项式法则,以及多项式相等的条件求出、的值,再代入计算可得.【详解】解:根据题意得:,则.故答案是:7.【点睛】此题考查了因式分解十字相乘法,熟练掌握运算法则是解本题的关键.9、-36【分析】将所求代数式先提取公因式xy,再利用完全平方公式分解因式,得出,然后整体代入x+y,xy的值计算即可.【详解】解:=,=-36,故答案为:-36.【点睛】本题考查了因式分解方法的应用,代数式求值的方法,同时还隐含了整体的数学思想和正确运算的能力.10、15【分析】将原式首先提取公因

20、式xy,进而分解因式,将已知代入求出即可.【详解】解:x2y5,xy3, .故答案为:15.【点睛】此题主要考查了提取公因式法分解因式,正确分解因式是解题关键.三、解答题1、【分析】根据分解因式的方法,先提公因式2a,然后利用完全平方公式法分解因式,最后利用平方差公式法分解因式求解即可.【详解】解:2ax416ax232a【点睛】此题考查了因式分解的方法,解题的关键是熟练掌握因式分解的方法.因式分解的方法有:提公因式法,平方差公式法,完全平方公式法,十字相乘法等.2、(1)2b(a-2b) 2;(2)(mn)( a+3)(a-3);(3)(3x+2)(3x-2)(9x2+4);(4)(m+1)

21、2(m-1)2【分析】(1)先提取2b,再利用完全平方公式分解因式即可;(2)先提取(mn),再利用平方差公式分解因式即可;(3)利用平方差公式分解因式,即可;(4)先用完全平方公式分解因式,再用平方差公式分解因式即可.【详解】解:(1)原式=2b(a2-4ab+4b2)=2b(a2-4ab+4b2)=2b(a-2b) 2;(2)原式=a2(mn)-9(mn)=(mn)( a2-9)=(mn)( a+3)(a-3);(3)原式=(9x24)(9x2+4)=(3x+2)(3x-2)(9x2+4);(4)原式=(m2+5)-62=(m2-1)2=(m+1)2(m-1)2.【点睛】本题主要考查分解因式,熟练掌握提取公因式法和公式法分解因式,是解题的关键.3、(1)-15;(2)【分析】(1)先算乘方,再算括号内的,再算乘法,最后算加减;(2)利用完全平方公式分解.【详解】解:(1)=-15;(2)=【点睛】本题考查了有理数的混合运算,因式分解,解题的关键是掌握运算法则和完全平方公式.

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁