《2022中考特训:人教版初中数学七年级下册第九章不等式与不等式组章节训练试卷(含答案解析).docx》由会员分享,可在线阅读,更多相关《2022中考特训:人教版初中数学七年级下册第九章不等式与不等式组章节训练试卷(含答案解析).docx(18页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、初中数学七年级下册第九章不等式与不等式组章节训练(2021-2022学年 考试时间:90分钟,总分100分)班级:_ 姓名:_ 总分:_题号一二三得分一、单选题(10小题,每小题3分,共计30分)1、已知x1是不等式(x5)(ax3a+2)0的解,且x4不是这个不等式的解,则a的取值范围是( )Aa2Ba1C2a1D2a12、若|m1|+m1,则m一定()A大于1B小于1C不小于1D不大于13、已知x2不是关于x的不等式2xm4的整数解,x3是关于x的不等式2xm4的一个整数解,则m的取值范围为()A0m2B0m2C0m2D0m24、下列不等式一定成立的是( )ABCD5、下列语句中,是命题的
2、是()若160,260,则12;同位角相等吗?画线段ABCD;如果ab,bc,那么ac;直角都相等ABCD6、设m为整数,若方程组的解x、y满足,则m的最大值是( )A4B5C6D77、若,则x一定是( )A零B负数C非负数D负数或零8、若mn,则下列各式正确的是()A2m2nBC1m1nDm2n29、若ab,则()Aa1bBb+1aC2a+12b+1Da1b+110、已知,则一定有,“”中应填的符号是( )ABCD二、填空题(5小题,每小题4分,共计20分)1、不等式组的解为_2、不等式组的解集为_3、安排学生住宿,若每间住3人,则还有13人无房可住;若每间住6人,则还有一间不空也不满,则宿
3、舍的房间数量可能为_4、如果,那么_05、关于x的不等式组有且只有五个整数解,则a的取值范围为_三、解答题(5小题,每小题10分,共计50分)1、解下列不等式(组),并把解集表示在数轴上(1);(2)2、解不等式组,并把解集表示在数轴上3、(1)若a0,则a 2a;(用“”“”“”填空)(2)若acb0,则abc 0;(用“”“”“”填空)(3)若ac0b,化简:4(ca)2(2cb),并判断化简结果的正负4、已知方程组的解满足x为非正数,y为负数(1)求m的取值范围;(2)在(1)的条件下,若不等式(2m+1)x2m1的解为x1,请写出整数m的值5、由于近期疫情防控形势严峻,妈妈让小明到药店
4、购买口罩,某种包装的口罩标价每袋10元,请认真阅读老板与小明的对话:(1)结合两人的对话内容,小明原计划购买几袋口罩?(2)此时,妈妈来电话说:“口罩只需要购买8袋,另外还需要购买消毒液和洗手液共5瓶,并且三种物品购买总价不超过200元”现已知消毒液标价每瓶20元,洗手液标价每瓶35元,经过沟通,老板答应三种物品都给予8折优惠,那么小明最多可购买洗手液多少瓶?-参考答案-一、单选题1、A【分析】根据不等式解的定义列出不等式,求出解集即可确定出a的范围【详解】解:x1是不等式(x5)(ax3a+2)0的解,且x4不是这个不等式的解, 且 ,即4(2a+2)0且(a+2)0,解得:a2故选:A【点
5、睛】此题考查了不等式的解集,熟练掌握一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集是解题的关键2、D【分析】先将绝对值等式移项变形为|m1|1 m,利用绝对值的非负性质列不等式1 m0,解不等式即可【详解】解:|m1|+m1,|m1|1 m,|m1|0,1 m0,m1故选择D【点睛】本题考查绝对值的性质,列不等式与解不等式,掌握绝对值的性质,列不等式与解不等式方法是解题关键3、B【分析】由2x-m4得x,根据x=2不是不等式2x-m4的整数解且x=3是关于x的不等式2x-m4的一个整数解得出2、3,解之即可得出答案【详解】解:由2x-m4得x,x=2不是不等式
6、2x-m4的整数解,2,解得m0;x=3是关于x的不等式2x-m4的一个整数解,3,解得m2,m的取值范围为0m2,故选:B【点睛】本题主要考查了一元一次不等式的整数解,解题的关键是根据不等式整数解的情况得出关于m的不等式4、B【分析】根据不等式的性质依次判断即可【详解】解:A.当y0时不成立,故该选项不符合题意;B.成立,该选项符合题意;C. 当x0时不成立,故该选项不符合题意;D. 当m0时不成立,故该选项不符合题意;故选:B【点睛】本题主要考查不等式的性质,熟练掌握不等式的性质是解决本题的关键5、A【分析】根据命题的定义分别进行判断即可【详解】解:若160,260,则12,是命题,符合题
7、意;同位角相等吗?是疑问句,不是命题,不符合题意;画线段ABCD,没有对事情作出判断,不是命题,不符合题意;如果ab,bc,那么ac,是命题,符合题意;直角都相等,是命题,符合题意,命题有故选:A【点睛】本题考查了命题与定理:判断事物的语句叫命题,命题有题设与结论两部分组成;正确的命题称为真命题,错误的命题称为假命题;经过推理论证的真命题称为定理6、B【分析】先把m当做常数,解一元二次方程,然后根据得到关于m的不等式,由此求解即可【详解】解:把3得:,用+得:,解得,把代入得,解得,即,解得,m为整数,m的最大值为5,故选B【点睛】本题主要考查了解二元一次方程组和解一元一次不等式和求不等式的整
8、数解,解题的关键在于能够熟练掌握解二元一次方程组的方法7、D【分析】根据绝对值的性质可得,求解即可【详解】解:,解得故选D【点睛】此题考查了绝对值和不等式的性质,解题的关键是熟练掌握绝对值和不等式的有关性质8、C【分析】根据不等式的基本性质逐项判断即可【详解】解:A:mn,2m2n,不符合题意;B:mn,不符合题意;C:mn,mn,1m1n,符合题意;D: mn,当时,m2n2,不符合题意;故选:C【点睛】本题主要考查了不等式的基本性质,熟练掌握不等式的3条基本性质是解题关键9、C【分析】举出反例即可判断A、B、D,根据不等式的性质即可判断C【详解】解:A、若a0.5,b0.4,ab,但是a1
9、b,不符合题意;B、若a3,b1,ab,但是b+1a,不符合题意;C、ab,2a+12b+1,符合题意;D、若a0.5,b0.4,ab,但是a1b+1,不符合题意故选:C【点睛】此题考查不等式的性质,对性质的理解是解题的关键不等式的性质:不等式的基本性质1:不等式的两边都加上(或减去)同一个数(或式子),不等号的方向不变;不等式的基本性质2:不等式的两边都乘以(或除以)同一个正数,不等号的方向不变;不等式的基本性质3:不等式的两边都乘以(或除以)同一个负数,不等号的方向改变10、B【分析】根据不等式的性质:不等式两边同时乘以同一个负数,不等号的方向改变,即可选出答案【详解】解:根据不等式的性质
10、,不等式两边都乘同一个负数,不等号的方向改变ab,-4a-4b故选:B【点睛】本题考查了不等式的性质,熟练掌握不等式的基本性质是解题的关键二、填空题1、【分析】解不等式组即可【详解】解:,解不等式得,;解不等式得,;不等式组的解集为【点睛】本题考查了解不等式组,解题关键是准确解每个不等式,正确确定不等式组的解集2、【分析】根据解一元一次不等组的方法“一般先求出其中各不等式的解集,再求出这些解集的公共部分”即可得【详解】解:解不等式,得,解不等式,得,即不等式组的解集为:,故答案为:【点睛】本题考查了解一元一次不等式组,解题的关键是掌握解一元一次不等式组的方法3、5或6【分析】设共有间宿舍,则共
11、有个学生,然后根据每间住6人,则还有一间不空也不满,列出不等式组进行求解即可【详解】解:设共有间宿舍,则共有个学生,依题意得:,解得:又为正整数,或6故答案为:5或6【点睛】本题主要考查了一元一次不等式组的应用,解题的关键在于能够准确根据题意列出不等式组进行求解4、【分析】由可得:异号,又与同号,所以而,即可求解【详解】解:由可得:异号,又与同号,所以而,所以,故答案为:【点睛】本题考查不等式的性质,得出与同号是解题关键5、-8【分析】先根据题目给出的不等式组解出含a的解集,再根据题目描述不等式组恰好只有5个整数解,得出-2-1,解不等式得出的取值范围即可【详解】解:,解不等式得,解不等式得,
12、不等式组的解为3,关于x的不等式组有且只有五个整数解为-1,0,1.2,3,-2-1,解得:-8故答案为-8【点睛】本题考查了不等式组的解法以及根据不等式组的整数解个数建立双边不等式的能力,这是一道含有参数的不等式组,掌握先解出含有a的解集后通过题目限制条件得出-2-1,来求a的范围是解决此题的关键三、解答题1、(1)x1,见解析;(2)3x1,见解析【解析】【分析】(1)按照去分母,去括号,移项,合并,系数化为1的步骤解不等式,然后在数轴上表示出不等式的解集即可;(2)先求出每个不等式的解集,然后求出不等式组的解集,最后在数轴上表示不等式组的解集即可【详解】解:(1),去分母得:,去括号得:
13、 4x+29x9+6,移项得:4x9x9+62,合并得:5x5,系数化为1得:x1,在数轴上表示为:(2)解不等式5x42+7x,得:x3,解不等式x,得:x1,则不等式组的解集为3x1,将不等式组的解集表示在数轴上如下:【点睛】本题主要考查了解一元一次不等式和解一元一次不等式组,并在数轴上表示不等式和不等式组的解集,解题的关键在于能够熟练掌握解一元一次不等式的方法2、x8【解析】【分析】先分别解出两个不等式,再求出公共解即可【详解】解:解不等式,得x8解不等式,得x等式组的解集是x8,不等式的解集在数轴上表示如图:【点睛】本题考查一元一次不等式组的解法,求两个不等式的公共解可以借助数轴求公共
14、部分,也可借助口诀“同大取大,同小取小,大小小大中间找,大大小小无解了”求公共部分3、 (1) ;(2) ;(3) -4a+2b,结果为正【解析】【分析】(1)根据不等式的基本性质即可求解;(2)根据有理数的乘法法则即可求解;(3)先化简,再根据根据不等式的基本性质即可求解;【详解】解:a0a2a(2) acb0,ac0(同号两数相乘得正),abc0(不等式两边乘以同一个负数,不等号的方向改变)(3) 4(ca)2(2cb)=4c-4a-4c+2b=-4a+2bac0b-4a0, 2b0-4a+2b0故结果为正【点睛】主要考查了不等式的基本性质:(1)不等式两边加(或减)同一个数(或式子),不
15、等号的方向不变(2)不等式两边乘(或除以)同一个正数,不等号的方向不变(3)不等式两边乘(或除以)同一个负数,不等号的方向改变4、(1)2m3;(2)1【解析】【分析】(1)先求出二元一次方程组的解为,然后根据x为非正数,y为负数,即x0,y0,列出不等式求解即可;(2)先把原不等式移项得到(2m+1)x2m+1根据不等式(2m+1)x2m1的解为x1,可得2m+10,由此结合(1)所求进行求解即可【详解】解:(1)解方程组用+得:,解得,把代入中得:,解得,方程组的解为:x为非正数,y为负数,即x0,y0,解得2m3;(2)(2m+1)x2m1移项得:(2m+1)x2m+1不等式(2m+1)
16、x2m1的解为x1,2m+10,解得m又2m3,m的取值范围是2m又m是整数,m的值为1【点睛】本题主要考查了解二元一次方程组,解一元一次不等式组,解一元一次不等式,解题的关键在于能够熟知相关求解方法5、(10)10;(2)4【解析】【分析】(1)设小明原计划购买x袋口罩,列方程,求解即可;(2)设购买洗手液a瓶,则购买消毒液(5-a)瓶,由题意得列不等式,求解即可【详解】解:(1)设小明原计划购买x袋口罩,由题意得,解得x=10,小明原计划购买10袋口罩;(2)设购买洗手液a瓶,则购买消毒液(5-a)瓶,由题意得,解得,小明最多可购买洗手液4瓶【点睛】此题考查了一元一次方程的实际应用,一元一次不等式的实际应用,正确理解题意列出方程或不等式是解题的关键