《2022年人教版八年级数学下册第十八章-平行四边形章节测评试题(名师精选).docx》由会员分享,可在线阅读,更多相关《2022年人教版八年级数学下册第十八章-平行四边形章节测评试题(名师精选).docx(30页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、人教版八年级数学下册第十八章-平行四边形章节测评 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图,已知菱形ABCD的对角线AC,BD的长分别为6,8,AEBC,垂足为点E,则AE的长是( )A5B2C
2、D2、如图,在正方形有中,E是AB上的动点,(不与A、B重合),连结DE,点A关于DE的对称点为F,连结EF并延长交BC于点G,连接DG,过点E作DE交DG的延长线于点H,连接,那么的值为( )A1BCD23、如图菱形ABCD,对角线AC,BD相交于点O,若BD8,AC6,则AB的长是( )A5B6C8D104、在ABCD中,AC=24,BD=38,AB=m,则m的取值范围是( )A24m39B14m62C7m31D7m125、如图,正方形ABCD中,AB12,点E在边BC上,BEEC,将DCE沿DE对折至DFE,延长EF交边AB于点G,连接DG、BF,给出以下结论:DAGDFG;BG2AG;
3、BF/DE;SBEF其中所有正确结论的个数是( )A1B2C3D46、在ABCD中,添加以下哪个条件能判断其为菱形( )AABBCBBCCDCCDACDACBD7、如图,将矩形ABCD沿对角线AC翻折,点B落在点F处,FC交AD于点E若AB4,BC8,则图中阴影部分的面积为()A8B10C12.5D7.58、在锐角ABC中,BAC60,BN、CM为高,P为BC的中点,连接MN、MP、NP,则结论:NPMP;AN:ABAM:AC;BN2AN;当ABC60时,MNBC,一定正确的有( )ABCD9、如图是用若干个全等的等腰梯形拼成的图形,下列说法错误的是( )A梯形的下底是上底的两
4、倍B梯形最大角是C梯形的腰与上底相等D梯形的底角是10、直角三角形的两条直角边分别为5和12,那么这个三角形的斜边上的中线长为()A6B6.5C10D13第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,在矩形ABCD中,AD3AB,点G,H分别在AD,BC上,连BG,DH,且,当_时,四边形BHDG为菱形2、已知如图,点E,F分别在正方形的边,上,若,则_ 3、如图,在ABCD中,点E是对角线AC上一点,过点E作AC的垂线,交边AD于点P,交边BC于点Q,连接PC、AQ,若AC6,PQ4,则PCAQ的最小值为_4、如图,在中,点、分别是三边的中点,且,则的长度是_
5、5、如果一个矩形较短的边长为5cm,两条对角线的夹角为60,则这个矩形的对角线长是_cm三、解答题(5小题,每小题10分,共计50分)1、如图,在矩形中,为对角线(1)用尺规完成以下作图:在上找一点,使,连接,作的平分线交于点;(保留作图痕迹,不写作法)(2)在(1)所作的图形中,若,求的度数2、在中,斜边,过点作,以AB为边作菱形ABEF,若,求的面积3、如图,正方形网格中的每个小正方形边长都是1,每个小格的顶点叫做格点,以格点为顶点分别按下列要求画三角形(1)在图1中,画一个三边长都是有理数的直角三角形;(2)在图2中,画一个以BC为斜边的直角三角形,使它们的三边长都是无理数且都不相等;(
6、3)在图3中,画一个正方形,使它的面积是104、如图,已知矩形中,点,分别是,上的点,且(1)求证:;(2)若,求:的值5、如图,已知四边形ABCD是正方形,点E是AD边上的一点(不与点A,D重合),连接CE,以CE为一边作正方形CEFG,使点F,G与点A,B在CE的两侧,连接BE并延长,交GD延长线于点H(1)如图1,请判断线段BE与GD的数量关系和位置关系,并说明理由;(2)如图2,连接BG,若AB2,CE,请你直接写出的值-参考答案-一、单选题1、D【解析】【分析】根据菱形的性质得出BO、CO的长,在RtBOC中求出BC,利用菱形面积等于对角线乘积的一半,也等于BCAE,可得出AE的长度
7、【详解】解:四边形ABCD是菱形,CO=AC=3,BO=BD=4,AOBO,BC= =5,S菱形ABCD=,S菱形ABCD=BCAE,BCAE=24,AE=,故选:D【点睛】此题考查了菱形的性质,也涉及了勾股定理,要求我们掌握菱形的面积的两种表示方法,及菱形的对角线互相垂直且平分2、B【解析】【分析】作辅助线,构建全等三角形,证明DAEENH,得AE=HN,AD=EN,再说明BNH是等腰直角三角形,可得结论【详解】解:如图,在线段AD上截取AM,使AM=AE, AD=AB,DM=BE,点A关于直线DE的对称点为F,ADEFDE,DA=DF=DC,DFE=A=90,1=2,DFG=90,在RtD
8、FG和RtDCG中,RtDFGRtDCG(HL),3=4,ADC=90,1+2+3+4=90,22+23=90,2+3=45,即EDG=45,EHDE,DEH=90,DEH是等腰直角三角形,AED+BEH=AED+1=90,DE=EH,1=BEH,在DME和EBH中,DMEEBH(SAS),EM=BH,RtAEM中,A=90,AM=AE, ,即=故选:B【点睛】本题考查了正方形的性质,全等三角形的判定定理和性质定理,等知识,解决本题的关键是作出辅助线,利用正方形的性质得到相等的边和相等的角,证明三角形全等3、A【解析】【分析】由菱形的性质可得OA=OC=3,OB=OD=4,AOBO,由勾股定理
9、求出AB【详解】解:四边形ABCD是菱形,AC=6,BD=8,OA=OC=3,OB=OD=4,AOBO,在RtAOB中,由勾股定理得:,故选:A【点睛】本题考查了菱形的性质、勾股定理等知识;熟练掌握菱形对角线互相垂直且平分的性质是解题的关键4、C【解析】【分析】作出平行四边形,根据平行四边形的性质可得,然后在中,利用三角形三边的关系即可确定m的取值范围【详解】解:如图所示:四边形ABCD为平行四边形,在中,即,故选:C【点睛】题目主要考查平行四边形的性质及三角形三边的关系,熟练掌握平行四边形的性质及三角形三边关系是解题关键5、D【解析】【分析】根据正方形的性质和折叠的性质可得ADDF,AGFD
10、90,于是根据“HL”判定RtADGRtFDG;再由GFGBGAGB12,EBEF,BGE为直角三角形,可通过勾股定理列方程求出AG4,BG8,即可判断;由BEF是等腰三角形,证明EBFDEC,;结合可得AGGF,根据等高的两个三角形的面积的比等于底与底的比即可求出三角形BEF的面积【详解】解:由折叠可知,DFDCDA,DFEC90,DFGA90,在RtADG和RtFDG中,RtADGRtFDG(HL),故正确;正方形边长是12,BEECEF6,设AGFGx,则EGx6,BG12x,由勾股定理得:EG2BE2BG2,即:(x6)262(12x)2,解得:x4,AGGF4,BG8,BG2AG,故
11、正确;EFECEB,EFBEBF,DECDEF,CEFEFBEBF,DECEBF,BF/DE,故正确;SGBEBEBG6824,GFAG4,EFBE6,SBEFSGBE24,故正确综上可知正确的结论的是4个故选:D【点睛】本题考查了图形的翻折变换的性质和正方形的性质,全等三角形的判定与性质,勾股定理,平行线的判定,三角形的面积计算,有一定的难度6、D【解析】【分析】根据对角线互相垂直的平行四边形是菱形,结合选项找到对角线互相垂直即可求解【详解】A、ABBC,ABC90,又四边形ABCD是平行四边形,四边形ABCD是矩形;故选项A不符合题意;B、C选项,同A选项一样,均为邻边垂直,ABCD是矩形
12、;故选项B、C不符合题意;D、四边形ABCD是平行四边形,又ACBD,四边形ABCD是菱形;故选项D符合题意故选D【点睛】本题考查了菱形的判定,掌握菱形的判定定理是解题的关键7、B【解析】【分析】利用折叠的性质可得ACFACB,由ADBC,可得出CADACB,进而可得出AECE,根据矩形性质可得AB=CD=4,BC=AD=8,D=90,设AECE=x,则ED8x,在RtCDE中,利用勾股定理可求出x的值,再利用三角形的面积公式即可求出ACE的面积,则可得出答案【详解】解:由折叠的性质,ACFACBADBC,CADACB,CADACF,AECE四边形ABCD为矩形,AB=CD=4,BC=AD=8
13、,D=90,设AECE=x,则ED8x,在RtCDE中,根据勾股定理得,即42+(8x)2x2,x5,图中阴影部分的面积SACE AEAB= 5410故选:B【点睛】本题考查了翻折变换、矩形的性质、勾股定理以及三角形的面积,利用勾股定理求出AE的长是解题的关键8、C【解析】【分析】利用直角三角形斜边上的中线的性质即可判定正确;利用含30度角的直角三角形的性质即可判定正确,由勾股定理即可判定错误;由等边三角形的判定及性质、三角形中位线定理即可判定正确【详解】CM、BN分别是高CMB、BNC均是直角三角形点P是BC的中点PM、PN分别是两个直角三角形斜边BC上的中线故正确BAC=60ABN=ACM
14、=90BAC=30AB=2AN,AC=2AMAN:AB=AM:AC=1:2即正确在RtABN中,由勾股定理得:故错误当ABC=60时,ABC是等边三角形CMAB,BNACM、N分别是AB、AC的中点MN是ABC的中位线MNBC故正确即正确的结论有故选:C【点睛】本题考查了直角三角形斜边上中线的性质,含30度角的直角三角形的性质,等边三角形的判定及性质,勾股定理,三角形中位线定理等知识,掌握这些知识并正确运用是解题的关键9、D【解析】【分析】如图(见解析),先根据平角的定义可得,再根据可求出,由此可判断选项;先根据等边三角形的判定与性质可得,再根据平行四边形的判定可得四边形是平行四边形,根据平行
15、四边形的性质可得,然后根据菱形的判定可得四边形是菱形,根据菱形的性质可得,最后根据线段的和差、等量代换可得,由此可判断选项【详解】解:如图,梯形是等腰梯形, ,则梯形最大角是,选项B正确;没有指明哪个角是底角,梯形的底角是或,选项D错误;如图,连接,是等边三角形,点共线,四边形是平行四边形,四边形是菱形,选项A、C正确;故选:D【点睛】本题考查了等腰梯形、菱形的判定与性质、等边三角形的判定与性质等知识点,熟练掌握各判定与性质是解题关键10、B【解析】【分析】根据勾股定理可求得直角三角形斜边的长,再根据直角三角形斜边上的中线等于斜边的一半即可求解【详解】解:直角三角形两直角边长为5和12,斜边,
16、此直角三角形斜边上的中线的长6.5故选:B【点睛】本题主要考查勾股定理及直角三角形斜边中线定理,熟练掌握勾股定理及直角三角形斜边中线定理是解题的关键二、填空题1、【解析】【分析】设 则再利用矩形的性质建立方程求解 从而可得答案.【详解】解: 四边形BHDG为菱形, 设 AD3AB,设 则 矩形ABCD, 解得: 故答案为:【点睛】本题考查的是勾股定理的应用,矩形的性质,菱形的性质,利用图形的性质建立方程确定之间的关系是解本题的关键.2、14【解析】【分析】过点作的垂线,交延长线于点,先根据正方形的性质、三角形全等的判定定理证出,根据全等三角形的性质可得,再根据三角形全等的判定定理证出,根据全等
17、三角形的性质即可得出答案【详解】解:如图,过点作的垂线,交延长线于点,四边形是正方形,在和中,又,在和中,故答案为:14【点睛】本题考查了正方形的性质、三角形全等的判定定理与性质等知识点,通过作辅助线,构造全等三角形是解题关键3、【解析】【分析】利用平行四边形的知识,将的最小值转化为的最小值,再利用勾股定理求出MC的长度,即可求解;【详解】过点A作且,连接MP,四边形是平行四边形,将的最小值转化为的最小值,当M、P、C三点共线时,的最小,在中,;故答案是:【点睛】本题主要考查了平行线的判定与性质,勾股定理,准确计算是解题的关键4、【解析】【分析】根据中位线定理可得的长度,再根据直角三角形斜边上
18、的中线等于斜边的一半即可求出的长度【详解】解:点、分别是三边的中点,且故答案为:【点睛】本题主要考查了三角形的中位线定理和直角三角形斜边上的中线,熟练掌握三角形的中位线定理和直角三角形斜边上的中线是解答本题的关键5、10【解析】【分析】如图,由题意得:四边形为矩形,证明是等边三角形,结合矩形的性质可得答案.【详解】解:如图,由题意得:四边形为矩形, 是等边三角形, 故答案为:【点睛】本题考查的是等边三角形的判定与性质,矩形的性质,掌握“矩形的对角线相等且互相平分”是解本题的关键.三、解答题1、(1)图形见解析;(2)【分析】(1)利用尺规根据题意即可完成作图;(2)结合(1)根据等腰三角形的性
19、质和三角形外角定理可得的度数【详解】(1)如图,点E和点F即为所求;(2),ABD=68,AEB=AEB=68EAB=180-68-68=44,EAD=90-44=46,AF平分DAE,FAE=DAE=23,【点睛】题考查了尺规作图-作角平分线,矩形的性质,熟练掌握5种基本作图是解决此类问题的关键2、4【分析】分别过点E、C作EH、CG垂直AB,垂足为点H、G,则CG是斜边AB上的高;在菱形ABEF中, 利用平行线的性质不难得到CG=EH;菱形的对角相等,四条边相等,联系含30角的直角三角形的性质求出EH,问题即可解答。【详解】解:如图,分别过作垂足为点 四边形ABEF为菱形,在中, ,根据题
20、意,根据平行线间的距离处处相等, .答:的面积为.【点睛】本题考查了菱形的性质,直角三角形的性质,平行线间的距离及三角形面积的计算,正确利用菱形的四边相等及直角三角形中,30角所对直角边是斜边的一半是解题的关键3、(1)见解析;(2)见解析;(3)见解析【分析】(1)如图,AB=4,BC=3,利用勾股定理逆定理即可得到ABC是直角三角形;(2)如图, ,利用勾股定理逆定理即可得到ABC是直角三角形;(3)如图, ,则,ABC=90,即可得到四边形ABCD是正方形,【详解】解:(1)如图所示,AB=4,BC=3,ABC是直角三角形;(2)如图所示, ,ABC是直角三角形;(3)如图所示, ,AB
21、C=90,四边形ABCD是正方形,【点睛】本题主要考查了有理数与无理数,正方形的判定,勾股定理和勾股定理的逆定理,熟知相关知识是解题的关键4、(1)见解析;(2)【分析】(1)根据矩形的性质得到,由垂直的定义得到,根据余角的性质得到,根据全等三角形的判定和性质即可得到结论;(2)由已知条件得到,由,即可得到:的值【详解】(1)四边形是矩形,在与中,;(2),【点睛】本题考查了矩形的性质,全等三角形的判定和性质,正确的识别图形是解题的关键5、(1)BE=DG,BEDG,理由见解析;(2)【分析】(1)由“SAS”证得GCDECB;再由全等三角形的性质和平行线的性质可得EBC=HED=GDC,由余
22、角的性质可得答案;(2)连接BD,EG,由知BHD=EHG=90,根据勾股定理可得出答案【详解】证明:(1)BE=DG,BEDG,理由如下:四边形ABCD是正方形,四边形FGCE是正方形,CD=CB,CG=CE,GCE=DCB=90,GCD=ECB,且CD=CB,CG=CE,GCDECB(SAS),BE=DG,GDC=EBC,ADBC,EBC=HED=GDC,GDC+HDE=90,HED+HDE=90,DHE=90,BEDG;(2)连接BD,EG,如图所示,由(1)知BHD=EHG=90,DH2+BH2=BD2=AB2+AD2=22+22=8,EH2+HG2=EG2=CG2+CE2=() 2+() 2=5+5=10,在RtBGH中,BH2+HG2=BG2,在RtEDH中,EH2+DH2=DE2,BG2+DE2=BH2+HG2+EH2+DH2=8+10=18【点睛】本题考查了正方形的判定与性质、全等三角形的判定和性质、勾股定理等知识,解题的关键是灵活运用全等三角形的性质解决问题,灵活运用条件解决问题