《2021-2022学年度沪科版九年级数学下册第24章圆同步练习试题(名师精选).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度沪科版九年级数学下册第24章圆同步练习试题(名师精选).docx(34页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。
1、沪科版九年级数学下册第24章圆同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图图案中,不是中心对称图形的是( )ABCD2、如图,四边形ABCD内接于,若四边形ABCO是菱形,则的度数为( )
2、A45B60C90D1203、下列图形中,既是轴对称图形又是中心对称图形的是()ABCD4、下列各曲线是在平面直角坐标系xOy中根据不同的方程绘制而成的,其中是中心对称图形的是( )ABCD5、如图,边长为5的等边三角形中,M是高所在直线上的一个动点,连接,将线段绕点B逆时针旋转得到,连接则在点M运动过程中,线段长度的最小值是( )AB1C2D6、在直径为10cm的圆柱形容器内装入一些水以后,截面如图所示,若水面宽cm,则水的最大深度为( )A1cmB2cmC3cmD4cm7、下列图形中,是中心对称图形也是轴对称图形的是()ABCD8、在半径为6cm的圆中,的圆心角所对弧的弧长是( )AcmB
3、cmCcmDcm9、如图,都是上的点,垂足为,若,则的度数为( )ABCD10、如图,圆形螺帽的内接正六边形的面积为24cm2,则圆形螺帽的半径是()A1cmB2cmC2cmD4cm第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,正方形ABCD是边长为2,点E、F是AD边上的两个动点,且AE=DF,连接BE、CF,BE与对角线AC交于点G,连接DG交CF于点H,连接BH,则BH的最小值为_2、如图,在平面直角坐标系xOy中,半径为1的半圆O上有一动点B,点,为等腰直角三角形,A为直角顶点,且C在第一象限,则线段OC长度的最大值为_3、如图,AB是半圆O的弦,DE是
4、直径,过点B的切线BC与O相切于点B,与DE的延长线交于点C,连接BD,若四边形OABC为平行四边形,则BDC的度数为_4、数学兴趣活动课上,小方将等腰的底边BC与直线l重合,问:(1)如图(1)已知,点P在BC边所在的直线l上移动,小方发现AP的最小值是_;(2)如图(2)在直角中,点D是CB边上的动点,连接AD,将线段AD顺时针旋转60,得到线段AP,连接CP,线段CP的最小值是_5、把一个正六边形绕其中心旋转,至少旋转_度,可以与自身重合三、解答题(5小题,每小题10分,共计50分)1、如图,在O中,点E是弦CD的中点,过点O,E作直径AB(AEBE),连接BD,过点C作CFBD交AB于
5、点G,交O于点F,连接AF求证:AGAF2、如图1,在O中,ACBD,且ACBD,垂足为点E(1)求ABD的度数;(2)图2,连接OA,当OA2,OAB15,求BE的长度;(3)在(2)的条件下,求的长3、如图,在平面直角坐标系中,经过原点,且与轴交于点,与轴交于点,点在第二象限上,且,则_4、在正方形ABCD中,过点B作直线l,点E在直线l上,连接CE,DE,其中,过点C作于点F,交直线l于点H(1)当直线l在如图的位置时请直接写出与之间的数量关系_请直接写出线段BH,EH,CH之间的数量关系_(2)当直线l在如图的位置时,请写出线段BH,EH,CH之间的数量关系并证明;(3)已知,在直线l
6、旋转过程中当时,请直接写出EH的长5、如图,在ABC是O的内接三角形,B45,连接OC,过点A作ADOC,交BC的延长线于D(1)求证:AD是O的切线;(2)若O的半径为2,OCB75,求ABC边AB的长-参考答案-一、单选题1、C【分析】根据中心对称图形的概念:把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形,这个点叫做对称中心求解【详解】解:A、是中心对称图形,故A选项不合题意;B、是中心对称图形,故B选项不合题意;C、不是中心对称图形,故C选项符合题意;D、是中心对称图形,故D选项不合题意;故选:C【点睛】本题考查了中心对称图形的知识,解
7、题的关键是掌握中心对称图形的概念中心对称图形是要寻找对称中心,旋转180后重合2、B【分析】设ADC=,ABC=,由菱形的性质与圆周角定理可得 ,求出即可解决问题【详解】解:设ADC=,ABC=; 四边形ABCO是菱形, ABC=AOC; ADC=; 四边形为圆的内接四边形,+=180, , 解得:=120,=60,则ADC=60, 故选:B【点睛】该题主要考查了圆周角定理及其应用,圆的内接四边形的性质,菱形的性质;掌握“同圆或等圆中,一条弧所对的圆周角是它所对的圆心角的一半”是解本题的关键.3、B【详解】解:A是轴对称图形,不是中心对称图形,故不符合题意;B既是轴对称图形,又是中心对称图形,
8、故符合题意;C不是轴对称图形,是中心对称图形,故不符合题意;D是轴对称图形,不是中心对称图形,故不符合题意故选:B【点睛】本题考查了中心对称图形与轴对称图形的概念,把一个图形绕某一点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形就叫做中心对称图形;如果一个图形沿一条直线折叠,直线两旁的部分能够互相重合,这个图形叫做轴对称图形轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后与原图重合4、C【分析】利用中心对称图形的定义:旋转能与自身重合的图形即为中心对称图形,即可判断出答案【详解】解:A、不是中心对称图形,故A错误B、不是中心对称
9、图形,故B错误C、是中心对称图形,故C正确D、不是中心对称图形,故D错误故选:C【点睛】本题主要是考查了中心对称图形的定义,熟练掌握中心对图形的定义,是解决该题的关键5、A【分析】取CB的中点G,连接MG,根据等边三角形的性质可得BH=BG,再求出HBN=MBG,根据旋转的性质可得MB=NB,然后利用“边角边”证明MBGNBH,再根据全等三角形对应边相等可得HN=MG,然后根据垂线段最短可得MGCH时最短,再根据BCH=30求解即可【详解】解:如图,取BC的中点G,连接MG,旋转角为60,MBH+HBN=60,又MBH+MBC=ABC=60,HBN=GBM,CH是等边ABC的对称轴,HB=AB
10、,HB=BG,又MB旋转到BN,BM=BN,在MBG和NBH中,MBGNBH(SAS),MG=NH,根据垂线段最短,MGCH时,MG最短,即HN最短,此时BCH=60=30,CG=AB=5=2.5,MG=CG=,HN=,故选A【点睛】本题考查了旋转的性质,等边三角形的性质,全等三角形的判定与性质,垂线段最短的性质,作辅助线构造出全等三角形是解题的关键,也是本题的难点6、B【分析】连接OB,过点O作OCAB于点D,交O于点C,先由垂径定理求出BD的长,再根据勾股定理求出OD的长,进而得出CD的长即可【详解】解:连接OB,过点O作OCAB于点D,交O于点C,如图所示:AB=8cm,BD=AB=4(
11、cm),由题意得:OB=OC=5cm,在RtOBD中,OD=(cm),CD=OC-OD=5-3=2(cm),即水的最大深度为2cm,故选:B【点睛】本题考查了垂径定理、勾股定理等知识;根据题意作出辅助线,构造出直角三角形是解答此题的关键7、C【分析】根据中心对称图形的定义旋转180后能够与原图形完全重合即是中心对称图形,以及轴对称图形的定义即可判断出【详解】解:A、不是轴对称图形,是中心对称图形,故A选项不符合题意;B、是轴对称图形,不是中心对称图形,故B选项不符合题意;C、既是轴对称图形,又是中心对称图形,故C选项符合题意;D、是轴对称图形,但不是中心对称图形,故D选项不符合题意故选:C【点
12、睛】本题考查中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180后与原图重合8、C【分析】直接根据题意及弧长公式可直接进行求解【详解】解:由题意得:的圆心角所对弧的弧长是;故选C【点睛】本题主要考查弧长计算,熟练掌握弧长计算公式是解题的关键9、B【分析】连接OC根据确定,进而计算出,根据圆心角的性质求出,最后根据圆周角的性质即可求出【详解】解:如下图所示,连接OC,和分别是所对的圆周角和圆心角,故选:B【点睛】本题考查垂径定理,圆心角的性质,圆周角的性质,综合应用这些知识点是
13、解题关键10、D【分析】根据圆内接正六边形的性质可得AOB是正三角形,由面积公式可求出半径【详解】解:如图,由圆内接正六边形的性质可得AOB是正三角形,过作于 设半径为r,即OA=OB=AB=r, OM=OAsinOAB=, 圆O的内接正六边形的面积为(cm2), AOB的面积为(cm2), 即, , 解得r=4, 故选:D【点睛】本题考查正多边形和圆,作边心距转化为直角三角形的问题是解决问题的关键二、填空题1、#【分析】延长AG交CD于M,如图1,可证ADGDGC可得GCD=DAM,再证ADMDFC可得DF=DM=AE,可证ABEADM,可得H是以AB为直径的圆上一点,取AB中点O,连接OD
14、,OH,根据三角形的三边关系可得不等式,可解得DH长度的最小值【详解】解:延长AG交CD于M,如图1,ABCD是正方形,AD=CD=AB,BAD=ADC=90,ADB=BDC,AD=CD,ADB=BDC,DG=DG,ADGDGC,DAM=DCF且AD=CD,ADC=ADC,ADMCDF,FD=DM且AE=DF,AE=DM且AB=AD,ADM=BAD=90,ABEDAM,DAM=ABE,DAM+BAM=90,BAM+ABE=90,即AHB=90,点H是以AB为直径的圆上一点如图2,取AB中点O,连接OD,OH,AB=AD=2,O是AB中点,AO=1=OH,在RtAOD中,OD=,DHOD-OH,
15、DH-1,DH的最小值为-1,故答案为:-1【点睛】本题考查正方形的性质,全等三角形的判定和性质,勾股定理,关键是证点H是以AB为直径的圆上一点2、1+【分析】过点C作CDx轴于D,过B作BEx轴于E,连结OB,设OD=x,根据点A(3,0)可求AD=x-3,根据为等腰直角三角形,得出AB=AC,BAC=90,再证BAEACD(AAS),得出BE=AD=x-3,EA=DC,在RtEBO中,根据勾股定理,得出CD=AE=,根据勾股定理CO=,当OD=CD时OC最大,OC=此时解方程即可【详解】解:过点C作CDx轴于D,过B作BEx轴于E,连结OB,设OD=x,点A(3,0)AD=x-3,为等腰直
16、角三角形,AB=AC,BAC=90,BAE+CAD=180-BAC=180-90=90,CDx轴, BEx轴,BEA=ADC=90,ACD+CAD=90,ACD=BAE,在BAE和ACD中,BAEACD(AAS),BE=AD=x-3,EA=DC,在RtEBO中,OB=1,BE= x-3,根据勾股定理,EA=OE+OA=,CD=AE=,CO=,当OD=CD时OC最大,OC=,此时,(舍去),线段OC长度的最大值为故答案为:1+【点睛】本题考查等腰直角三角形性质,三角形全等判定与性质,勾股定理,掌握等腰直角三角形性质,三角形全等判定与性质,勾股定理是解题关键3、【分析】先由切线的性质得到OBC=9
17、0,再由平行四边形的性质得到BO=BC,则BOC=BCO=45,由OD=OB,得到ODB=OBD,由ODB+OBD=BOC,即可得到ODB=OBD=22.5,即BDC=22.5【详解】解:BC是圆O的切线,OBC=90,四边形ABCO是平行四边形,AO=BC,又AO=BO,BO=BC,BOC=BCO=45,OD=OB,ODB=OBD,ODB+OBD=BOC,ODB=OBD=22.5,即BDC=22.5,故答案为:22.5【点睛】本题主要考查了平行四边形的性质,切线的性质,等腰三角形的性质与判定,三角形外角的性质,熟知切线的性质是解题的关键4、10 5 【分析】(1)如图,作AHBC于H根据垂线
18、段最短,求出AH即可解决问题(2)如图,在AB上取一点K,使得AKAC,连接CK,DK由PACDAK(SAS),推出PCDK,易知KDBC时,KD的值最小,求出KD的最小值即可解决问题【详解】解:如图作AHBC于H,ABAC20, , , ,根据垂线段最短可知,当AP与AH重合时,PA的值最小,最小值为10AP的最小值是10;(2)如图,在AB上取一点K,使得AKAC,连接CK,DKACB90,B30,CAK60,PADCAK,PACDAK,PADA,CAKA,PACDAK(SAS),PCDK,KDBC时,KD的值最小, , 是等边三角形, ,PC的最小值为5【点睛】本题属于几何变换综合题,考
19、查了等腰三角形的性质,垂线段最短,全等三角形的判定和性质等知识,解题的关键是学会用转化的思想思考问题5、60【分析】正六边形连接各个顶点和中心,这些连线会将360分成6分,每份60因此至少旋转60,正六边形就能与自身重合【详解】3606=60故答案为:60【点睛】本题考查中心对称图形的性质,根据图形特征找到最少旋转度数是本题关键三、解答题1、见解析【分析】由题意易得ABCD,则有,由平行线的性质可得,然后可得,进而问题可求证【详解】证明:AB为O的直径,点E是弦CD的中点,ABCD,CFBD,【点睛】本题主要考查垂径定理、平行线的性质及圆周角定理,熟练掌握垂径定理、平行线的性质及圆周角定理是解
20、题的关键2、(1);(2);(3)【分析】(1)如图,过作 垂足分别为 连接证明 四边形为正方形,可得 证明 可得答案;(2)先求解 再结合(1)的结论可得答案;(3)如图,连接 先求解 再证明 再求解 可得 再利用弧长公式计算即可.【详解】解:(1)如图,过作 垂足分别为 连接 四边形为矩形,由勾股定理可得: 而 四边形为正方形, 而 (2)如图,过作 垂足分别为 由(1)得:四边形为正方形, OA2,OAB15, (3)如图,连接 【点睛】本题考查的是勾股定理的应用,等腰三角形的判定与性质,矩形,正方形的判定与性质,垂径定理的应用,弧长的计算,掌握以上知识并灵活运用是解本题的关键.3、2+
21、【分析】连接AC,CM,AB,过点C作CHOA于H,设OC=a利用勾股定理构建方程解决问题即可【详解】解:连接AC,CM,AB,过点C作CHOA于H,设OC=aAOB=90,AB是直径,A(-4,0),B(0,2),AMC=2AOC=120,在RtCOH中,在RtACH中,AC2=AH2+CH2,a=2+ 或2-(因为OCOB,所以2-舍弃),OC=2+,故答案为:2+【点睛】本题考查圆周角定理,勾股定理,解直角三角形等知识,解题的关键是学会利用参数构建方程解决问题4、(1);(2);证明见解析;(3)或【分析】(1),根据CE=BC,四边形ABCD为正方形,可得BC=CD=CE,根据CFDE
22、,得出CF平分ECD即可;,过点C作CGBE于G,根据BC=EC,得出ECG=BCG=,根据ECH=HCD=,可得CG=HG,根据勾股定理在RtGHC中,根据GE=,得出即可;(2),过点C作交BE于点M,得出,先证得出,可证是等腰直角三角形,可得即可;(3)或,根据,分两种情况,当ABE=90-15=75时,BC=CE,先证CDE为等边三角形,可求FEH=DEC=CEB=60-15=45,根据CFDE,得出DF=EF=1,FHE=180-HFE-FEH=45,根据勾股定理HE=,当ABE=90+15=105,可得BC=CE得出CBE=CEB=15,可求FCE=,FEC=180-CFE-FCE
23、=30,根据30直角三角形先证得出CF=,根据勾股定理EF=,再证FH=FE,得出EH=即可【详解】解:(1)CE=BC,四边形ABCD为正方形,BC=CD=CE,CFDE,CF平分ECD,ECH=HCD,故答案为:ECH=HCD;,过点C作CGBE于G,BC=EC,ECG=BCG=,ECH=HCD=,GCH=ECG+ECF=+,GHC=180-HGC+GCH=180-90-45=45,CG=HG,在RtGHC中, ,GE=, GH=GE+EH=,故答案是:;(2), 证明:过点C作交BE于点M,则,是等腰直角三角形, (3)或,分两种情况,当ABE=90-15=75时,BC=CE,CBE=C
24、EB=15,BCE=180-CBE-CEB=180-15-15=150,DCE=BCE-BCD=150=90=60,CE=CD,CDE为等边三角形,DE=CD=AB=2,DEC=60,FEH=DEC=CEB=60-15=45,CFDE,DF=EF=1,FHE=180-HFE-FEH=45,EF=HF=1,HE=,当ABE=90+15=105,BC=CE,CBE=CEB=15,BCE=180-CBE-CEB=150,DCE=360-DCB-BCE=120,CE=BC=CD,CHDE,FCE=, FEC=180-CFE-FCE=30,CF=,EF=,HEF=CEB+CEF=15+30=45,FHE
25、=180-HFE-FEH=45=FEH,FH=FE,EH=,或【点睛】本题考查正方形性质,图形旋转性质,勾股定理,等边三角形,等腰直角三角形性质,角平分线,线段和差,掌握正方形性质,图形旋转性质,勾股定理,等边三角形,等腰直角三角形性质,角平分线,线段和差是解题关键5、(1)见解析;(2)【分析】(1)如图所示,连接OA,由圆周角定理可得COA=90,再由平行线的性质得到OAD+COA=180,则OAD=90,由此即可证明;(2)连接OB,过点O作OEAB,垂足为E,先由等腰三角形的性质与三角形内角和定理求出COB =30,则AOB=120,可以得到OAB=OBA=30,由勾股定理可得,求出,
26、则AB=【详解】解:(1)如图所示,连接OA,CBA=45,COA=90, ADOC,OAD+COA=180,OAD=90,又点A在圆O上, AD是O的切线; (2)连接OB,过点O作OEAB,垂足为E,OCB=75,OB=OC,OCB=OBC=75,COB=180-OCB-OBC=30, 由(1)证可得AOC=90,AOB=120, OA=OB,OAB=OBA=30,又OEAB,AE=BE, 在RtAOE中,AO=2,OAE=30,OE=AO=1, 由勾股定理可得,AB=【点睛】本题主要考查了圆周角定理,切线的判定,等腰三角形的性质与判定,含30度角的直角三角形的性质,三角形内角和定理,勾股定理,熟知相关知识是解题的关键