2021-2022学年度强化训练沪科版九年级数学下册第24章圆同步练习试题(含详解).docx

上传人:可****阿 文档编号:32509321 上传时间:2022-08-09 格式:DOCX 页数:27 大小:1.62MB
返回 下载 相关 举报
2021-2022学年度强化训练沪科版九年级数学下册第24章圆同步练习试题(含详解).docx_第1页
第1页 / 共27页
2021-2022学年度强化训练沪科版九年级数学下册第24章圆同步练习试题(含详解).docx_第2页
第2页 / 共27页
点击查看更多>>
资源描述

《2021-2022学年度强化训练沪科版九年级数学下册第24章圆同步练习试题(含详解).docx》由会员分享,可在线阅读,更多相关《2021-2022学年度强化训练沪科版九年级数学下册第24章圆同步练习试题(含详解).docx(27页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、沪科版九年级数学下册第24章圆同步练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、下列判断正确的个数有( )直径是圆中最大的弦;长度相等的两条弧一定是等弧;半径相等的两个圆是等圆;弧分优弧和劣弧;同一

2、条弦所对的两条弧一定是等弧A1个B2个C3个D4个2、如图,AB是O的直径,弦,则阴影部分图形的面积为( )ABCD3、如图,在中,将绕点C逆时针旋转90得到,则的度数为( )A105B120C135D1504、下列图形中,既是中心对称图形又是抽对称图形的是( )ABCD5、如图,一个宽为2厘米的刻度尺(刻度单位:厘米)放在圆形玻璃杯的杯口上,刻度尺的一边与杯口外沿相切,另一边与杯口外沿两个交点处的读数恰好是2和8,那么玻璃杯的杯口外沿半径为()A5厘米B4厘米C厘米D厘米6、下列图形中,可以看作是中心对称图形的是( )ABCD7、的边经过圆心,与圆相切于点,若,则的大小等于( )ABCD8、

3、扇形的半径扩大为原来的3倍,圆心角缩小为原来的,那么扇形的面积( )A不变B面积扩大为原来的3倍C面积扩大为原来的9倍D面积缩小为原来的9、如图,ABC外接于O,A30,BC3,则O的半径长为( )A3BCD10、下列各点中,关于原点对称的两个点是()A(5,0)与(0,5)B(0,2)与(2,0)C(2,1)与(2,1)D(2,1)与(2,1)第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、如图,把分成相等的六段弧,依次连接各分点得到正六边形ABCDEF,如果的周长为,那么该正六边形的边长是_ 2、如图,P是正方形ABCD内一点,将绕点B顺时针方向旋转,能与重合,若,

4、则_3、在ABC中,已知ABC90,BAC30,BC1,如图所示,将ABC绕点A按逆时针方向旋转90后得到ABC则图中阴影部分的面积为_4、如图,AB是半圆O的直径,点D在半圆O上,C是弧BD上的一个动点,连接AC,过D点作于H连接BH,则在点C移动的过程中,线段BH的最小值是_5、如图,PM,PN分别与O相切于A,B两点,C为O上异于A,B的一点,连接AC,BC若P58,则ACB的大小是_三、解答题(5小题,每小题10分,共计50分)1、如图,四边形ABCD内接于O,AC是直径,点C是劣弧BD的中点(1)求证:(2)若,求BD2、如图,内接于,BC是的直径,D是AC延长线上一点(1)请用尺规

5、完成基本作图:作出的角平分线交于点P(保留作图痕迹,不写作法)(2)在(1)所作的图形中,过点P作,垂足为E则PE与有怎样的位置关系?请说明理由3、如图,在ABC中,ACB=90,AC=BC,D是AB边上一点(与A、B不重合),连接CD,将线段CD绕点C按逆时针方向旋转90得到线段CE,连接DE、BE(1)求证:ACDBCE;(2)若BE=5,DE=13,求AB的长4、如图,是的直径,四边形内接于,是的中点,交的延长线于点(1)求证:是的切线;(2)若,求的长5、下面是“过圆外一点作圆的切线”的尺规作图过程已知:O和O外一点P求作:过点P的O的切线作法:如图,(1)连接OP;(2)分别以点O和

6、点P为圆心,大于的长半径作弧,两弧相交于M,N两点;(3)作直线MN,交OP于点C;(4)以点C为圆心,CO的长为半径作圆,交O于A,B两点;(5)作直线PA,PB直线PA,PB即为所求作O的切线完成如下证明:证明:连接OA,OB,OP是C直径,点A在C上OAP=90(_)(填推理的依据)OAAP又点A在O上,直线PA是O的切线(_)(填推理的依据)同理可证直线PB是O的切线-参考答案-一、单选题1、B【详解】直径是圆中最大的弦;故正确,同圆或等圆中长度相等的两条弧一定是等弧;故不正确半径相等的两个圆是等圆;故正确弧分优弧、劣弧和半圆,故不正确同一条弦所对的两条弧可位于弦的两侧,故不一定相等,

7、则不正确综上所述,正确的有故选B【点睛】本题考查了圆相关概念,掌握弦与弧的关系以及相关概念是解题的关键2、D【分析】根据垂径定理求得CE=ED=;然后由圆周角定理知COE=60然后通过解直角三角形求得线段OC,然后证明OCEBDE,得到求出扇形COB面积,即可得出答案【详解】解:设AB与CD交于点E,AB是O的直径,弦CDAB,CD=2,如图,CE=CD=,CEO=DEB=90,CDB=30,COB=2CDB=60,OCE=30,又,即,在OCE和BDE中,OCEBDE(AAS),阴影部分的面积S=S扇形COB=,故选D【点睛】本题考查了垂径定理、含30度角的直角三角形的性质,全等三角形的性质

8、与判定,圆周角定理,扇形面积的计算等知识点,能知道阴影部分的面积=扇形COB的面积是解此题的关键3、B【分析】由题意易得,然后根据三角形外角的性质可求解【详解】解:由旋转的性质可得:,;故选B【点睛】本题主要考查旋转的性质及三角形外角的性质,熟练掌握旋转的性质及三角形外角的性质是解题的关键4、B【详解】解:是轴对称图形,不是中心对称图形,故此选项不符合题意;既是轴对称图形,也是中心对称图形,故此选项符合题意;是轴对称图形,不是中心对称图形,故此选项不符合题意;不是轴对称图形,是中心对称图形,故此选项不符合题意;故选:B【点睛】本题主要考查了中心对称图形和轴对称图形的概念,解题的关键是判断轴对称

9、图形的关键是寻找对称轴,图形两部分折叠后可重合;判断中心对称图形是要寻找对称中心,旋转180度后与原图重合5、D【分析】根据题意先求出弦AC的长,再过点O作OBAC于点B,由垂径定理可得出AB的长,设杯口的半径为r,则OB=r-2,OA=r,在RtAOB中根据勾股定理求出r的值即可【详解】解:杯口外沿两个交点处的读数恰好是2和8,AC=8-2=6厘米,过点O作OBAC于点B,则AB=AC=6=3厘米,设杯口的半径为r,则OB=r-2,OA=r,在RtAOB中,OA2=OB2+AB2,即r2=(r-2)2+32,解得r=厘米故选:D【点睛】本题考查的是垂径定理的应用,根据题意作出辅助线,构造出直

10、角三角形是解答此题的关键6、C【分析】根据中心对称图形的定义进行逐一判断即可【详解】解:A、不是中心对称图形,故此选项不符合题意;B、不是中心对称图形,故此选项不符合题意;C、是中心对称图形,故此选项符合题意;D、不是中心对称图形,故此选项不符合题意;故选C【点睛】本题主要考查了中心对称图形的识别,解题的关键在于能够熟练掌握中心对称图形的定义:把一个图形绕着某一个点旋转180,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心7、A【分析】连接,根据圆周角定理求出,根据切线的性质得到,根据直角三角形的性质计算,得到答案【详解】解:连接, ,与圆相切于点,

11、故选:A【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键8、A【分析】设原来扇形的半径为r,圆心角为n,则变化后的扇形的半径为3r,圆心角为,利用扇形的面积公式即可计算得出它们的面积,从而进行比较即可得答案【详解】设原来扇形的半径为r,圆心角为n,原来扇形的面积为,扇形的半径扩大为原来的3倍,圆心角缩小为原来的,变化后的扇形的半径为3r,圆心角为,变化后的扇形的面积为,扇形的面积不变故选:A【点睛】本题考查了扇形面积,熟练掌握并灵活运用扇形面积公式是解题关键9、A【分析】分析:连接OA、OB,根据圆周角定理,易知AOB=60;因此ABO是等边三角形,即可

12、求出O的半径【详解】解:连接BO,并延长交O于D,连结DC,A=30,D=A=30,BD为直径,BCD=90,在RtBCD中,BC=3,D=30,BD=2BC=6,OB=3故选A【点睛】本题考查了圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30角所对直角三角形性质,掌握圆周角性质,利用同弧所对圆周角性质与直径所对圆周角性质,30角所对直角三角形性质是解题的关键10、D【分析】根据关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,可得答案【详解】解:A、(5,0)与(0,5)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故A错误;B、(0,2)与(2

13、,0)横、纵坐标不满足关于原点对称的点的横坐标互为相反数,纵坐标互为相反数的特征,故B错误;C、(2,1)与(2,1)关于x轴对称,故C错误;D、关于原点对称的点的横坐标互为相反数,纵坐标互为相反数,故D正确;故选:D【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数二、填空题1、6【分析】如图,连接OA、OB、OC、OD、OE、OF,证明AOB、BOC、DOC、EOD、EOF、AOF都是等边三角形,再求出圆的半径即可【详解】解:如图,连接OA、OB、OC、OD、OE、OF正六边形ABCDEF,ABBCCDDEEFFA,AOBBOCCODDOEEOF

14、FOA60,AOB、BOC、DOC、EOD、EOF、AOF都是等边三角形,的周长为,的半径为,正六边形的边长是6;【点睛】本题考查正多边形与圆的关系、等边三角形的判定和性质等知识,明确正六边形的边长和半径相等是解题的关键2、【分析】根据旋转角相等可得,进而勾股定理求解即可【详解】解:四边形是正方形将绕点B顺时针方向旋转,能与重合,故答案为:【点睛】本题考查了旋转的性质,勾股定理,求得旋转角相等且等于90是解题的关键3、【分析】利用勾股定理求出AC及AB的长,根据阴影面积等于求出答案【详解】解:由旋转得,=BAC30,ABC90,BAC30,BC1,AC=2BC=2,AB=, 阴影部分的面积=,

15、故答案为:【点睛】此题考查了求不规则图形的面积,正确掌握勾股定理、30度角直角三角形的性质、扇形面积计算公式及分析出阴影面积的构成特点是解题的关键4、#【分析】连接,取的中点,连接,由题可知点在以为圆心,为半径的圆上,当、三点共线时,最小;求出,在中,所以,即为所求【详解】解:连接,取的中点,连接,点在以为圆心,为半径的圆上,当、三点共线时,最小,是直径,在中,故答案为:【点睛】本题考查点的运动轨迹,勾股定理,解题的关键是能够根据点的运动情况,确定点的运动轨迹5、或【分析】如图,连接利用切线的性质结合四边形的内角和定理求解再分两种情况讨论,结合圆周角定理与圆的内接四边形的性质可得答案.【详解】

16、解:如图,连接 (即)分别在优弧与劣弧上, PM,PN分别与O相切于A,B两点, 故答案为:或【点睛】本题考查的是切线的性质定理,圆周角定理的应用,圆的内接四边形的性质,四边形的内角和定理的应用,求解是解本题的关键.三、解答题1、(1)见详解;(2)【分析】(1)由题意及垂径定理可知AC垂直平分BD,进而问题可求解;(2)由题意易得,然后由(1)可知ABD是等边三角形,进而问题可求解【详解】(1)证明:AC是直径,点C是劣弧BD的中点,AC垂直平分BD,;(2)解:,ABD是等边三角形,【点睛】本题主要考查垂径定理、等边三角形的性质与判定及圆周角定理,熟练掌握垂径定理、等边三角形的性质与判定及

17、圆周角定理是解题的关键2、(1)作图见解析(2)是的切线,理由见解析【分析】(1)如图1所示,以点为圆心,大于为半径画弧,交于点,交于点;分别以点为圆心,大于的长度为半径画弧,交点为,连接即为角平分线,与的交点即为点(2)如图2所示,连接,由题意可知,;在四边形中,求出,得出,由于是半径,故有是的切线(1)解:如图1所示(2)解:是的切线如图2所示,连接由题意可知,在四边形中又是半径是的切线【点睛】本题考查了角平分线的画法与性质,切线的判定,圆周角等知识点解题的关键在于将知识综合灵活运用3、(1)见解析;(2)17【分析】(1)由旋转的性质可得CDCE,DCE90ACB,由“SAS”可证ACD

18、BCE;(2)由ACB90,ACBC,可得CABCBA45,再由ACDBCE,得到BEAD=5,CBECAD45,则ABEABC+CBE90,然后利用勾股定理求出BD的长即可得到答案【详解】解:(1)证明:将线段CD绕点C按逆时针方向旋转90得到线段CE,CDCE,DCE90ACB,ACD+BCD=BCE+BCD,即ACDBCE,在ACD和BCE中,ACDBCE(SAS);(2)ACB90,ACBC,CABCBA45,ACDBCE,BEAD=5,CBECAD45,ABEABC+CBE90,AB=AD+BD=17【点睛】本题考查了旋转的性质,全等三角形的判定和性质,等腰直角三角形的性质,证明三角

19、形全等是解题的关键4、(1)见详解;(2)【分析】(1)连接OD,由圆周角定理可得AOD=ABC,从而得ODBC,进而即可得到结论;(2)连接AC,交OD于点F,利用勾股定理可得AC,再证明四边形DFCE是矩形,进而即可求解【详解】(1)证明:连接OD,是的中点,ABC=2ABD,AOD=2ABD,AOD=ABC,ODBC,是的切线;(2)连接AC,交OD于点F,AB是直径,ACB=90,AC=,是的中点,ODAC,AF=CF=3,DF=5-4=1,E=EDF=DFC=90,四边形DFCE是矩形,DE=CF=3,CE=DF=1,AD=CD=,ADB=90,【点睛】本题主要考查切线的判定定理,圆周角定理以及勾股定理,添加辅助线构造直角三角形和矩形,是解题的关键5、直径所对的圆周角是直角 经过半径的外端并且垂直于这条半径的直线是圆的切线 【分析】连接OA,OB,根据圆周角定理可知OAP=90,再依据切线的判定证明结论;【详解】证明:连接OA,OB,OP是C直径,点A在C上,OAP=90(直径所对的圆周角是直角),OAAP又点A在O上,直线PA是O的切线(经过半径的外端并且垂直于这条半径的直线是圆的切线),同理可证直线PB是O的切线,故答案为:直径所对的圆周角是直角;经过半径的外端并且垂直于这条半径的直线是圆的切线

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁