2021-2022学年最新京改版八年级数学下册第十四章一次函数课时练习练习题(无超纲).docx

上传人:知****量 文档编号:28151312 上传时间:2022-07-26 格式:DOCX 页数:25 大小:321.14KB
返回 下载 相关 举报
2021-2022学年最新京改版八年级数学下册第十四章一次函数课时练习练习题(无超纲).docx_第1页
第1页 / 共25页
2021-2022学年最新京改版八年级数学下册第十四章一次函数课时练习练习题(无超纲).docx_第2页
第2页 / 共25页
点击查看更多>>
资源描述

《2021-2022学年最新京改版八年级数学下册第十四章一次函数课时练习练习题(无超纲).docx》由会员分享,可在线阅读,更多相关《2021-2022学年最新京改版八年级数学下册第十四章一次函数课时练习练习题(无超纲).docx(25页珍藏版)》请在taowenge.com淘文阁网|工程机械CAD图纸|机械工程制图|CAD装配图下载|SolidWorks_CaTia_CAD_UG_PROE_设计图分享下载上搜索。

1、京改版八年级数学下册第十四章一次函数课时练习 考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、一次函数y=kx+b(k0)的图象如图所示,当x2时,y的取值范围是( )Ay0Cy32、已知点A(a+9,2a

2、+6)在y轴上,a的值为()A9B9C3D33、一个一次函数图象与直线yx平行,且过点(1,25),与x轴、y轴的交点分别为A、B,则在线段AB上(包括端点A、B),横、纵坐标都是整数的点有( )A4个B5个C6个D7个4、正比例函数y=mx的图象经过点(-1,2),那么这个函数的解析式为( )Ay=xBy=xCy=2xDy=-2x5、已知点A(x,5)在第二象限,则点B(x,5)在( )A第一象限B第二象限C第三象限D第四象限6、若点A(x1,y1)和B(x2,y2) 都在一次函数y=(k)x+2(k为常数)的图像上,且当x1y2,则k的值可能是( )Ak=0Bk=1Ck=2Dk=37、甲、

3、乙两名运动员在笔直的公路上进行自行车训练,行驶路程S(千米)与行驶时间t(小时)之间的关系如图所示,下列四种说法:甲的速度为40千米/时;乙的速度始终为50千米/时;行驶1小时时,乙在甲前10千米处;甲、乙两名运动员相距5千米时,t =05或t =2或t =4,其中正确的是( )ABCD8、点在( )A第一象限B第二象限C第三象限D第四象限9、如图,直线l是一次函数的图象,下列说法中,错误的是( )A,B若点(1,)和点(2,)是直线l上的点,则C若点(2,0)在直线l上,则关于x的方程的解为D将直线l向下平移b个单位长度后,所得直线的解析式为10、已知正比例函数ykx的函数值y随x的增大而减

4、小,则一次函数ykxk的图象大致是()ABCD第卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、甲、乙两施工队分别从两端修一段长度为380米的公路在施工过程中,乙队曾因技术改进而停工一天,之后加快了施工进度并与甲队共同按期完成任务下表根据每天工程进度绘制而成的施工时间/天123456789累计完成施工量/米3570105140160215270325380下列结论:甲队每天修路20米;乙队第一天修路15米;乙队技术改进后每天修路35米;前7天甲、乙两队修路长度相等其中正确的结论有_(填序号)2、一个用电器的电阻是可调节的,其调节范围为:110220已知电压为220,这个用

5、电器的功率P的范围是:_ w(P表示功率,R表示电阻,U表示电压,三者关系式为:PR=U)3、一次函数y=kx+b(k0)的图象是_,它可以看作由直线y=kx(k0)平移|b|个单位而得到(当b0时,向_平移,当b0时,向_平移)4、写一个y关于x的函数,同时满足两个条件:(1)图象经过点(3,2);(2) y随x的增大而增大这个函数表达式可以为_(写出一个即可)5、甲、乙两人相约周末登山,甲、乙两人距地面的高度y/m与登山时间x/min之间的函数图象如图所示,根据图象所提供的信息解答下列问题:(1)b_m;(2)若乙提速后,乙登山上升速度是甲登山上升速度的3倍,则登山_min时,他们俩距离地

6、面的高度差为70m三、解答题(5小题,每小题10分,共计50分)1、已知A、B两地之间有一条公路甲车从A地出发匀速开往B地,甲车出发两小时后,乙车从B地出发匀速开往A地,两车同时到达各自的目的地两车行驶的路程之和y(千米)与甲车行驶的时间x(小时)之间的函数关系如图所示(1)甲车的速度为 千米/时,a的值为 (2)求乙车出发后,y与x之间的函数关系式2、已知y与x1成正比例,且当x3时,y4(1)求出y与x之间的函数解析式;(2)当x1时,求y的值3、实际情境:甲、乙两人从相距4千米的两地同时、同向出发,甲每小时走6千米,乙每小时走4千米,小狗随甲一起出发,每小时跑12千米,小狗遇到乙的时候它

7、就往甲这边跑,遇到甲时又往乙这边跑,遇到乙的时候再往甲这边跑就这样一直跑下去数学研究:如图,折线、分别表示甲、小狗在行进过程中,离乙的路程y(km)与甲行进时间x(h)之间的部分函数图像(1)求线段AB对应的函数表达式;(2)求点E的坐标;(3)小狗从出发到它折返后第一次与甲相遇的过程中,直接写出x为何值时,它离乙的路程与它离甲的路程相等?4、阅读下列一段文字,然后回答问题已知在平面内两点、,其两点间的距离,且当两点间的连线在坐标轴或平行于坐标轴或垂直于坐标轴时,两点间距离公式可简化为或(1)已知A、B两点在平行于y轴的直线上,点A的纵坐标为4,点B的纵坐标为,试求A、B两点之间的距离;(2)

8、已知一个三角形各顶点坐标为、,你能判定此三角形的形状吗?说明理由(3)在(2)的条件下,平面直角坐标系中,在x轴上找一点P,使的长度最短,求出点P的坐标以及的最短长度5、在平面直角坐标系中,且a,b满足,C、D两点分别是y轴正半轴、x轴负半轴上的两个动点:(1)如图1,若,求的面积;(2)如图1,若,且,求D点的坐标;(3)如图2,若,以为边,在的右侧作等边,连接,当最短时,求A,E两点之间的距离;-参考答案-一、单选题1、A【解析】【分析】观察图象得到直线与x轴的交点坐标为(2,0),根据一次函数性质得到y随x的增大而减小,所以当x2时,y0【详解】一次函数y=kx+b(k0)与x轴的交点坐

9、标为(2,0),y随x的增大而减小,当x2时,y0故选:A【点睛】本题考查了一次函数的性质:一次函数y=kx+b(k、b为常数,k0)的图象为直线,当k0,图象经过第一、三象限,y随x的增大而增大;当k0,图象经过第二、四象限,y随x的增大而减小;直线与x轴的交点坐标为2、A【解析】【分析】根据y轴上点的横坐标为0列式计算即可得解【详解】解:点A(a+9,2a+6)在y轴上,a+9=0,解得:a=-9,故选:A【点睛】本题考查了点的坐标,熟记y轴上点的横坐标为0是解题的关键3、A【解析】【分析】由题意可得:求出符合条件的直线为5x4y750,即可求出此直线与与x轴、y轴的交点分别为A(15,0

10、)、B(0,),再设出在直线AB上并且横、纵坐标都是整数的点的坐标,进而结合题意得到不等式求出N的范围,即可得到N的取值得到答案【详解】解:设直线AB的解析式为ykxb,一次函数图象与直线yx平行,k,又所求直线过点(1,25),25(1)b,解得b,直线AB为yx,此直线与与x轴、y轴的交点分别为A(15,0)、B(0,),设在直线AB上并且横、纵坐标都是整数的点的横坐标是x14N,纵坐标是y255N,(N是整数)因为在线段AB上这样的点应满足0x14N15,且y255N0,解得:N4,所以N1,2,3,4共4个,故选:A【点睛】本题考查一次函数图象上点的坐标特征,根据题意写出x和y的表示形

11、式是解题的关键4、D【解析】【分析】把点(-1,2)代入正比例函数y=mx即可求解【详解】解:正比例函数y=mx的图象经过点(-1,2),-m=2,m=-2,这个函数解析式为y=-2x故选:D【点睛】本题考查了待定系数法求正比例函数解析式,理解待定系数法,把点的坐标代入函数解析式是解题关键5、D【解析】【分析】由题意直接根据各象限内点坐标特征进行分析即可得出答案【详解】点A(x,5)在第二象限,x0,x0,点B(x,5)在四象限故选:D【点睛】本题考查各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解题的关键,四个象限的符号特点分别是:第一象限(+,+);第二象限(-,+);第三象限(

12、-,-);第四象限(+,-)6、A【解析】【分析】利用一次函数y随x的增大而减小,可得,即可求解【详解】当x1y2一次函数y=(k)x+2的y随x的增大而减小k的值可能是0故选:A【点睛】本题考查了一次函数图象上点的坐标特征,解题关键是利用一次函数图象上点的坐标特征,求出7、D【解析】【分析】分析图像上每一段表示的实际意义,再根据行程问题计算即可【详解】甲的速度为,故正确;时,已的速度为,后,乙的速度为,故错误;行驶1小时时,甲走了40千米,乙走了50千米,乙在甲前10千米处,故正确;由得:甲的函数表达式为:,已的函数表达为:时,时,时,甲、乙两名运动员相距,时,甲、乙两名运动员相距,时,甲、

13、乙两名运动员相距为,故正确故选:D【点睛】本题为一次函数应用题,此类问题主要通过图象计算速度,即分析每一段表示的实际意义进而求解8、C【解析】【分析】根据各象限内点的坐标特征解答【详解】解:点的横坐标小于0,纵坐标小于0,点所在的象限是第三象限故选:C【点睛】本题考查了各象限内点的坐标的符号特征,记住各象限内点的坐标的符号是解决的关键,四个象限的符号特点分别是:第一象限(,);第二象限(,);第三象限(,);第四象限(,)9、B【解析】【分析】根据一次函数图象的性质和平移的规律逐项分析即可【详解】解:A.由图象可知,故正确,不符合题意;B. -10时,向上平移,当b0时,向下平移)故答案为:一

14、条直线 上 下【点睛】本题考查了一次函数的性质,做题的关键是牢记性质准确填写4、(答案不唯一)【解析】【分析】取y关于x的一次函数,设,把代入求出,得出函数表达式即可【详解】取y关于x的一次函数,y随x的增大而增大,取,设y关于x的一次函数为,把代入得:,这个函数表达式可以为故答案为:(答案不唯一)【点睛】本题考查一次函数的性质,掌握一次函数的相关性质是解题的关键5、 30 3、10、13【解析】【分析】(1)根据路程与时间求出乙登山速度,再求2分钟路程即可;(2)先求甲速度,再求出乙提速后得速度,再用待定系数法求AB与CD解析式,根据解析式组成方程组求出相遇时间,利用两函数之差=70建构方程

15、求出相遇后相差70米的时间或乙到终点相距70米的时间即可【详解】解:(1)内乙的速度为151=15m/min,;(2)甲登山上升速度是(m/min),乙提速后速度是(m/min)(min)设甲函数表达式为,把(0,100),(20,300)代入,得解得.设乙提速前的函数表达式为.把(1,15)代入,得,设乙提速后的函数表达式为,把(2,30),(11,300)代入,得解得,当时,解得;当时,解得;当时,解得综上所述:登山3min、10min、13min时,他们俩距离地面的高度差为70m【点睛】本题考查一次函数图像获取信息,待定系数法求函数解析式,方程组解法,利用两者间距离建构方程,掌握一次函数

16、图像获取信息,待定系数法求函数解析式,方程组解法,利用两者间距离建构方程是解题关键三、解答题1、(1)40;480;(2)y=100x-120【解析】【分析】(1)根据图象可知甲车行驶2行驶所走路程为80千米,据此即可求出甲车的速度;进而求出甲车行驶6小时所走的路程为240千米,根据两车同时到达各自的目的地可得a=2402=480;(2)运用待定系数法解得即可;【详解】解:(1)由题意可知,甲车的速度为:802=40(千米/时);a=4062=480,故答案为:40;480;(2)设y与x之间的函数关系式为y=kx+b,由图可知,函数图象经过(2,80),(6,480),2k+b=806k+b

17、=480,解得k=100b=-120,y与x之间的函数关系式为y=100x-120;【点睛】本题考查了从函数图象获取信息,以及待定系数法求一次函数解析式,解答本题的关键是明确题意,找出所求问题需要的条件,利用数形结合的思想解答2、(1)y2x2;(2)0【解析】【分析】(1)利用正比例函数的定义,设y=k(x-1),然后把已知的一组对应值代入求出k即可得到y与x的关系式;(2)利用(1)中关系式求出自变量为1时对应的函数值即可【详解】解:(1)设yk(x1),把x3,y4代入得(31)k4,解得k2,所以y2(x1),即y2x2;(2)当x1时,y2120【点睛】本题考查考查了待定系数法求一次

18、函数解析式:先设出函数的一般形式,如求一次函数的解析式时,先设y=kx+b;再将自变量x的值及与它对应的函数值y的值代入所设的解析式,得到关于待定系数的方程或方程组;然后解方程或方程组,求出待定系数的值,进而写出函数解析式3、(1);(2);(3)或【解析】【分析】(1)利用待定系数法求线段AB对应的函数表达式即可;(2)设DE对应的函数表达式为,根据k的几何意义可,将点D坐标代入求得b,再与线段AB解析式联立方程组求出交点E坐标即可;(3)利用待定系数法求线段AD对应的函数解析式,分y1=2y3和y1=2y2求解x值即可【详解】解:(1)设线段AB对应的函数表达式为,由图像得,当时,当时,代

19、入得:,解得:,线段AB对应的函数表达式为(0x2);(2)设线段DE对应的函数表达式为,由题意得,将代入,得,线段DE对应的函数表达式为,点E是线段AB和线段DE的交点,故E满足:,解得:,;(3)设线段AD对应的函数表达式为,将A(0,4)、代入,得:,解得:,设AD对应的函数表达式为,由题意,分两种情况:当y=2y3时,由2x+4=2(8x+4)得:;当y=2y2时,由2x+4=2(16x8)得:,故当或时,它离乙的路程与它离甲的路程相等【点睛】本题考查一次函数的应用、待定系数法求一次函数表达式,理解题意,理清图象中各点、各线段之间的关系是解答的关键4、(1)5;(2)能,理由见解析;(

20、3)134,0,73【解析】【分析】(1)根据文字提供的计算公式计算即可;(2)根据文字中提供的两点间的距离公式分别求出DE、DF、EF的长度,再根据三边的长度即可作出判断;(3)画好图,作点F关于x轴的对称点G,连接DG,则DG与x轴的交点P即为使PD+PF最短,然后有待定系数法求出直线DG的解析式即可求得点P的坐标,由两点间距离也可求得最小值【详解】(1)A、B两点在平行于y轴的直线上AB=4-(-1)=5即A、B两点间的距离为5(2)能判定DEF的形状由两点间距离公式得:DE=(-2-1)2+(2-6)2=5,DF=(4-1)2+(2-6)2=5,EF=4-(-2)=6DE=DFDEF是

21、等腰三角形(3)如图,作点F关于x轴的对称点G,连接DG,则DG与x轴的交点P即为使PD+PF最小由对称性知:点G的坐标为(4,-2),且PG=PFPD+PF=PD+PGDG即PD+PF的最小值为线段DG的长设直线DG的解析式为y=kx+b(k0),把D、G的坐标分别代入得:k+b=64k+b=-2解得:k=-83b=263即直线DG的解析式为y=-83x+263上式中令y=0,即-83x+263=0,解得x=134即点P的坐标为134,0由两点间距离得:DG=DG=(4-1)2+(-2-6)2=9+64=73所以PD+PF的最小值为73【点睛】本题是材料阅读题,考查了等腰三角形的判定,待定系

22、数法求一次函数的解析式,两点间线段最短,关键是读懂文字中提供的两点间距离公式,把两条线段的和的最小值问题转化为两点间线段最短问题5、 (1)的面积为12;(2) D点的坐标为-2,0;(3) A,E两点之间的距离为【解析】【分析】(1)利用完全平方式和绝对值的性质求出a, b,然后确定A、B两点坐标,从而利用三角形面积公式求解即可;(2)根据题意判断出CBDDAE,从而得到CB= AD,然后利用勾股定理求出CB,即可求出结论;(3)首先根据已知推出DCBECA ,得到DBC=EAC=120,进一步推出AEBC ,从而确定随着D点的运动,点E在过点A且平行于BC的直线PQ上运动,再根据点到直线的

23、最短距离为垂线段的长度,确定OE最短时,各点的位置关系,最后根据含30角的直角三角形的性质求解即可【详解】解: (1) :a+b2+b+3=0,由非负性可知:a+b=0b+3=0 ,解得:a=3b=-3 A(3,0), B(-3,0), AB=3-(-3)=6, C(0,4),OC=4,SABC=12ABOC=1264=12;(2)由(1)知A(3,0), B(-3,0),OA=OB,OCAB,AOC=BOC=90,在AOC和BOC中,OA=OBAOC=BOCOC=OC ,AOCBOCSAS ,CBO=CAO,CDA=CDE +ADE=BCD+CBA,CBA=CDE,ADE=BCD,在BCD和

24、ADE中,BCD=ADECBD=DAEBD=AE ,BCDADEAAS,CB= AD, B(-3,0), C(0,4),OB=3,OC=4, BC=OB2+OC2=5 ,AD=BC=5,A(3,0),D(-2,0);(3)由(2) 可知CB=CA,CBA=60,ABC为等边三角形,BCA=60, DBC=120,CDE为等边三角形,CD=CE,DCE=60,DCE=DCB+BCE,BCA=BCE+ECA,DCB=ECA,在DCB和ECA中,CD=CEDCB=ECACB=CA ,DCBECA( SAS),DBC=EAC= 120,EAC+ACB= 120+60= 180,AEBC,即:随着D点的运动,点E在过点A且平行于BC的直线PQ上运动,要使得OE最短,如图所示,当OEPQ时,满足OE最短,此时OEA=90,DBC=EAC=120,CAB=60,OAE=EAC-CAB=60,AOE= 30, A(3,0),OA=3,AE=12OA=32 当OE最短时,A,E两点之间的距离为【点睛】本题考查坐标与图形,全等三角形的判定与性质,等腰三角形和等边三角形的判定与性质等,理解平面直角坐标系中点坐标的特征,掌握等腰或等边三角形的性质,熟练使全等三角形的判定与性质是解题关键

展开阅读全文
相关资源
相关搜索

当前位置:首页 > 应用文书 > 策划方案

本站为文档C TO C交易模式,本站只提供存储空间、用户上传的文档直接被用户下载,本站只是中间服务平台,本站所有文档下载所得的收益归上传人(含作者)所有。本站仅对用户上传内容的表现方式做保护处理,对上载内容本身不做任何修改或编辑。若文档所含内容侵犯了您的版权或隐私,请立即通知淘文阁网,我们立即给予删除!客服QQ:136780468 微信:18945177775 电话:18904686070

工信部备案号:黑ICP备15003705号© 2020-2023 www.taowenge.com 淘文阁